Typographia et flamma polyester retardatio / nylon trim

Studium peractum est ad problemata processus imprimendi complexi, aquae altae consumptio in post curatione, vastitatis missio alta, pauper color velocitas et flamma paupertatis retardatio polyester/nylon fabricarum impressarum decorat.

Tabula contentorum

Praefatio

Characteres polyester/nylon decorativae textilia et technicae quaestiones excudendi ac tingendi processus

1.1.1 Basic notae fibrarum polyester et nylon

Polyester (polyester) fit ex acido terephthalico (PTA) et ethylene glycol (EG) per reactionem polycondensationis [1], quae vim et modulum elasticitatis altam frangens, lumen egregium, caloris et corrosionis resistentia, ac debilitatem, rigorem ac praestantem. rugam repugnantiam[2]. Maxima synthetica fibra est nunc mundi[3]. Celeri evolutione technologiae chemicae, mechanicae et electronicae automationis, polyester fibra productionis materiae rudis, corona fibra, necnon processus textilis imprimendi et tingendi, denique, continuos, automated et summa celeritate complentur.

Compositio et structura catenarum (condensatio acidi terephthalici et ethylene glycoli) ostendit polyester fibras consistere in anulo benzene rigido et in hydrocarboni globi aliphatici flexili. Circulus Esther, qui cum benzene anulo directe coniungitur, systema rigidum co-momenti cum anulo benzene format, quae liberam rotationem segmentorum flexibilium catenarum cui iungitur restringit. Fibrarum polyesterarum structura supramolecularis est partim crystallina, cum partibus cristallinae catenis molecularibus inter se parallelis, maxime in transformatione trans- fluentibus, dum regiones amorphos plures conformationes habent. Molecularis structura et crystallisatio polyester conventionalis ostendit moleculas satis arcte dispositas esse ac propterea bonas proprietates mechanicas habere. Ob artam dispositionem hypotheticam et crystallinitatem altam, motus thermarum hypotheticarum vinculorum cum caliditate est comitari ut eos a statu concreto absolvat. Praeterea fibrae polyesterae hydrophobae sunt et coetus reactivae carent in structura eorum hypothetica quae dyestuffis adstringunt sicut fibrarum cellulosarum vel interdum, quae condiciones tingendas fibris polyesteris magis exigentibus reddit. Fibrae maxime polyesterae tinguntur vel impressae cum tinguis sparsis, quae sunt paene insolubiles in aqua et disperguntur in minutis particulis in aqua, quae in fibras polyesteras in altum temperaturas diffundunt ad tingendas fibras polyester.

Nylon (fibra polyamidis) primus fibra synthetica industriae productus fuit, cum DuPont nylon 66 producens (polyhexamethylene diamideum) per stamina liquefactum et Schlack nylon 6 (polycaprolactam). Nylon late adhibetur propter suam washability, non-ironingi proprietates, bonam dimensionem stabilitatem, humilitatem recusationem et bonam tempestatem resistentiam, et secundum fibram Chemicam Internationalem anno 2010, productio polyamidei globalis fibra 3,7 decies centena millia talentorum ab 2009 pervenit et expectatur excedere. 4.4 decies centena millia amphoras ab MMXX.

Quamvis varia genera fibrarum polyamiderum sint, duae praecipuae sunt polyamide 6 (PA6) et polyamide 66 (PA66), quarum utraque linearis, moleculae longae catenae cum globulis nullis praeter hydrogenia et oxygeni atomos, habent; plene extensa, plana, serrata figura in crystallo. Structura similis est quam polyester in catenis rectis et complicatis coexistunt, cum propinquis vinculis inter vincula in consectetuer vincula et structuram crystallinam stabilitam ordinatae. Fibrae polyamides moleculae arcte ligatae sunt, stabilem structuram chemicam habent et multas proprietates egregias habent. Cum magna fibra synthetica roboris est, 2-3-plo fortior est quam bombacio, 3-4-plo viscoso validior, 10 plus abrasionis resistens quam serici vel bombicini et 20 pluries abrasioni renitens quam lanam, et saepe pro ideali ponitur. materia ad fabricandum rerum quae saepe frictioni subiectae sunt, ut tibialia et funes parachute. Magnam etiam mollitiam et elongationem in luce habet et alcali valde resistit, sed caloris pauperis resistentiam habet, cum vitreo transitus temperatus 50°C-60°C[13]. Tincturae nylon proprietatibus lanae similes sunt et fieri solent cum digerendis, acidis et dyestuffis neutris [14]. Tincturae enim nylon fibrarum, tingui acidi sunt dyestuff electionis, sicut nylon per vincula ionica vel van der Waals ligant vires ad colorandum colorem egregium alacritate praestandum.

1.1.2 Basic notae polyester/nylon textilia decorat

Fibrae chemicae in textili industria dimidium saeculum adhibitae sunt et munus inaestimabile egerant in crescentibus fibrarum naturalium necessitatibus, quae limitantur disponibilitate terrae arabilis et campi pascendi. Cum evolutione fibrarum technologiarum chemicarum et applicationis altae technologiae, nova generatio fibrarum chemicarum celeriter processit, amplians ampliationem applicationum ad materias fibrarum textilium. In variis generibus textorum, textilia cum duobus vel pluribus fibris in foro domestico et internationali hisce annis attentionem factae sunt.

Intertexta producta fiunt per contextum duorum vel plurium generum materiarum crudarum ad maximizandas notas et proprietates stamen fibrarum et subtegentium, dum etiam meliori altiore inserviendi fabricae [17, 18]. Exempli causa, bombycinae bombycinae nitorem serici habent, mollem xylinum, egregium respirabilitatem et umoris effusio, bonam elasticitatem et drapabilitatem, praesertim cum detrita vestis habet singularem naturam sudorem haurientem et non complexam, qua; puris sericis textis incomparabilis.

Fabricae polyester/nylon fiunt texendo fibras polyester et nylon in certa ratione, quae magnam vim habent et resistentiam abrasionis bonam. Ut positionem competitive in foro obtineant, societates polyestera filamentis quibusdam loco nylon utuntur ad texendum ad impensas reducendas. Diversae rationes intertextae polyester et nylon varias mutationes perficiendi efficere possunt, ideo ratio polyester ad nylon moderari debet secundum applicationem actualem.

1.1.3 Current investigatio de tingendis et processui polyester/nylon fibris

Polyester et nylon sunt fibrae hydrophobicae, sed proprietates earum structurales admodum diversae sunt. Fabricae purae polyesterae plerumque tinctae dispersae tinguntur, dum textilia nylon saepe infirmis acidicis vel neutra tincturis tinguntur, vel ad nylon tincturas reciproce et dispergendas, sed requiritur quaedam colorum tegumentum. Polyester/nylon textilia tingui possunt cum tinguibus acidis dispersis, tinguis digerendis vel directis tinguis dispergendis/reactivum in balneum unum, duos gradus vel duos balineos processus, qui sub caliditas et pressura exercetur.

Semper fuerunt difficultates vel difficultates in textis polyester/nylon tingendis. Revera, dyestuffos plus minusve nylon partem inficiunt et nylon maculant. Ad bonum igitur colorem festinationemque consequendam, multa mola duo balnea tingendi methodo utuntur, ubi tingui primo tinguntur, dein purgantur cum reductione agentis, ac demum nylon tingitur cum acido vel 1, colore aureo. . Humida velocitas dyestufforum acidorum insufficiens est et difficile est occurrere quale postulatis clientium. Duo balnea methodus efficiendi efficientiam minuit, longiorem accipit et auget impensas et limitata colorum velocitatem emendationem habet, ut clientes saepe ad colorem velocitatis exigentiae reducere et duplicem balneum modum cedere et officinas in eodem balineo mori eligat.

Ob differentias structurarum inter polyester et nylon, differentiae adsorptionis et fixationis dyestuffis dispersae in duobus fibris facile causantur. Patet differentias diametri, superficiei specificae et structuram fibrarum polyester/nylon ducunt difficultates in homogeneitate, homochromaticitate, colore evolutionis et coloris velocitate fibrarum polyester/nylon. Sol Sasa et al. usus est urinae tingui diversarum structurarum ad tingendum polyester textilia tinguere et conclusit quosdam azo benzene et azo heterocyclicas dis- tinguere colores parvam differentiam totius coloris in polyester/nylon fractis et ad tingendis homochromaticis aptas fuisse, cum anthraquinone tingutiones dispersae parvam apparentem colorem habuerint. profunditas in nylon et minimae homochromaticae fuerunt. Ad emendandum dyabilitatem fabricarum polyester/nylon, genus tincturae temporalis solubilis dispersae continens β-hydroxyethyl sulfonis globi sulfationis summatim erat, quae summam dyabilitatem et colorem bonum in textilia nylon habet. Zhai Shengguo [29] et al. usus 12 fucos dispergit ut polyester tingat et nylon textilia ad ima temperaturas irrideat (98°C), ostendens additionem alcoholi benzyl prodesse colori profundo polyester et homochromaticitas textilia.

Progressus in textorum technologiae excudendi

1.2.1 Overview of the main printing method for textilia

Processus utendi tincturas, pingit vel alias materias speciales organicas vel inorganicae colorantes ita ut exemplar reproducibile applicandum ad textile cognoscatur sicut impressio. Modi imprimendi directam excudendi, pingendi, imprimendi, inkjet imprimendi et transferendi imprimendi.

Recta impressio est processus typographici in quo crustulum color directe impressum est in fabricae albae vel lucis coloratae et deinde post-austu et aliis processibus tractata. Crustum typographicum conficitur ex dyestuffis vel pigmentis, absorbentibus, co-solventibus, etc. et crustulum originalem. Dyestuffus determinari potest ex natura fibrarum, indoles exemplaris, color velocitas tinctura et condiciones instrumenti. Dyestuffus, pastes et processus condiciones variae sunt ad directum imprimendum in diversis fibris. Processus principales directae excudendi directae sunt tincturae imprimendi directum, reactivum tinctum directum imprimendi, deductio tinctura recta imprimendi, fucum directum imprimendi tinctum. Typographia directa est colore pinguis, tactui mollis et optimum colorem velocitatis habet, sed incommodum altae aquae consumptio, et altae aquae excrementum et pituitae umor. Dyestuff directa impressio in polyester textilia dispergenda requirit vaporem caliditatis post impressionem, ut ad vitandum colorum interpenetrationes, dyestuffos cum summa sublimatione velocitatis eligantur. Typographia directa in nylon saepe fit cum dyestuffis acidis, quae habent commoda colorum colorum et colorum nitidorum, sed adhuc laborant velocitatem colorum, necessitatem colorum fixationis et gravem soipationem et lavationem operum in processu post processu. .

Pinge excudendi modus est imprimendi quo color organicus vel inorganicus/pingendus adhibetur ad formandum exemplar in superficie fibri vel fabricae adhibito polymeric ligans vel crosslinker. Pinge pastes typographicae plerumque constant e crassioribus, coloribus / fucis, ligatoribus et aliis additivis. Post solvendo evaporationem, ligans continuam structuram pelliculae in area typographica fabricae format, et ligator et crosslinker pingunt in superficie fibrae tenent. Apta est ad imprimendum omnia genera fibrarum earumque mixtionum. Pinge Typographia commoda brevi processu habet, humilis aqua consummatio et humilis vastitas aquarum emissio, sed etiam incommodum habet colores vividiores minus, durius sentiendi et decolores velocitatem. Facultas movendi ligantis cinematographica directe determinat figurae qualitatem, incluso ictum in colore, vibrancy, sensu et colore velocitatem fabricae typis impressae. Cum progressu temporis et technologiae evolutio excellentium qualitatum colorum, tenaces et crassiores celeritas facta est, qualitas typographiae pingendi paulatim meliorandi ac applicationum ampliatio augetur.

Inkjet impressio varietas instrumenti digitalis est, exemplar in computatorium requisitum, per processus informationes imaginis, imperium computatorium atramentum pigmentum in aere compresso feret, per colliculum imprimendi in subiecto imprimendi imbrem continebit. Cum tradita typographica, atramenti impressio comparata haec praecipua lineamenta habet: ① Processus typographicus totus a computatro refrenatur et operatio simplicior est quam traditum imprimendum, tollendo necessitatem processuum multiplicium, sicut lamina faciendi, copia commensuratio, abrasio et exsiccatio. . Quamdiu bonum propositum computatorium statuit, gradus excudendi perfici potest. Pigmentum atramentum directe impressum fabricae et fabricae late adhibetur. - Typographia in postulatione, copiae minus vastitatis, apta quantitatibus, multi-species requisitis. -Exprimendi totum processum in potestate computatrale, reproducibilitas imprimendi bonum est, parvum specimen et specimen magnum constantius. Superioris proceritatis subtilitas vel resolutio, ad clausuras altioris perspicuitatis requisita ac multipliciora exemplaria apta. Sed problema principale est quod atramentum facile est intercludere, alta processus gratuita, et difficultas productionis massae, atramentum typographicum valde speciale, inkjet variae machinae typographicae et inkjet modo, atramentum adhibitum non est idem, difficile est. atramentum universale facere, quod evolutionem inkjet typographicam provocat. Typographia Inkjet amplam evolutionem habet, cum continua machinis et instrumentis evolutionis, optimae accurationis exemplaribus et cottidianis output emendatis.

Translatio typographica est impressio fucorum colorum in charta translationis ac deinde translatio et exemplar tingunt in charta ad formam in textile formandam. Duo sunt genera translationis typographiae, caloris translatio typographica et frigus translatio typographiae. Translatio typographica caloris primum usus est in synthetica fibrarum, et plerique dyestuum dispersae cum festinatione pauperis caloris sublimationis delecti sunt. Ope caliditatis et pressionis, dyestuffus in charta translationis prae-typis impressus in accuratam contactum cum fabrica adductus est, et sicut dyestuffus sublimatus, fabrica tincta est.

Translatio typographica frigida solet adhiberi pro ty-estuff acido imprimendi, ubi dyestuffus per calorem et pressuram humidum ad fabricam transfertur, et dein dyestuffus convenienter vapore ad colorem fixificationem perficiendum transfertur. For example, PR Brady et al. utere pondus humilitatis hypotheticae dyestufforum continentium chlorinum ad imprimendum in lana, bonum colorem assequendum profunditatem et velocitatem. Translatio typographica frigida etiam ex humili translatione rates laborat et tabes chartarum altae translationis.

1.2.2 Novae technologiae typographiae ad textilia

Cum hominum requisita ad stilum, colorem, sentiunt et tutelam environmental textorum oriri pergunt, technologiae typographiae textilia etiam celeri gradu enucleantur. Novae technologiae materiaeque inter se coniunguntur ad novos modos excudendis creandos, qui celeriorem progressionem textilium typis recentibus annis adduxit. Ipsa industria imprimendi et tingendi valde aquatica est intensiva et pollutio industriae, ac necessitas viridium technologiarum ac novarum artium magis ac magis urget. Praeter inkjet imprimendi et transferendi imprimendi, quae late ad commercium adhibita sunt, novae technologiae typographicae ut photoelectricae imaginatio imprimendi[50], micro-encapsulationis imprimendi[51], radiatio energiae typographicae[52], spuma trium dimensivarum typographica[53]. ] et confluentibus excudendis[54] etiam ortae sunt.

Secundum naturam materiae fabricandi [55-58] , processus additivus commoda liberae formae et multiplicis productorum habet, altam materialem utendorum et automationis gradum, cum processus subtractivus altam praecisionem habet, altam efficientiam, simplices processus et princeps materialis consummatio; proculdubio iungenda est utriusque evolutionis moderatio in industria fabricanda.

Ex essentia processus imprimendi, processus typographiae coniunctio intelligi potest “ELOGIUM processus” et “subtractive processus”. Uno modo, ut occurratur postulatis fundamentalibus instrumentorum impressorum ad fabricam imprimendam; “cruda farina, tingendis materiis, auxiliis, &c.” or * “thickeners, coatings, tenaces, crosslinkers, etc.” adduntur, et manifesta exemplaria formantur in superficie fabricae ope instrumentorum (machinarum vel atramenti typographiae, vel atramenti machinis excudendi, etc.), et tunc fixatio et color evolutionis dyestufforum in fibris perficitur per summum. caliditas solidamentum (fumo vel coquens). Secundo, ut metus typographiae fabricae pro colore velocitatis et tactus mollis, excessus dyestufforum et alia additamenta a fabrica removeantur per curationem post-printingam (reductivam lavationem, saponem vel aquam calidam lavantem, etc.) producere producta cum print. egregiam observantiam. Typographia directa et inkjet impressio processus additivi et subtractivi coniuncti sunt. Auxiliante moderamine computatrale, processus additivus atramenti typographiae accuratior et efficax est, signanter minuens onus processuum subtractivorum et commodum environmental parvae aquae vastae et pituitae emissiones habens.

Ad hoc, Zhu Yawei et al. novum conceptum propositus est “Micro printing”, which organly combines direct printing and coating printing , i.e “disperge dyestuff, crustulum et auxilia” componitur to “liquor dispergat dyestuffus, densior et eget prepolymer”. Medium Typographia primum impressum est in fabrica utendi modos imprimendi rectos, deinde dyestuffus dispersus tingitur et sistit in fibris utens caliditas calidi aeris fixationis methodum pingendi imprimendi, et denique parva copia auxiliorum et dyestufforum perturbata amovetur. fibris a curatione excudendi. “Micro” significat quantitatem tincturarum et auxiliorum quam minimam, modo color profunditas fabricae praestatur, v.g. moles tincturarum saturatas adsorptiones vel fixationes fibrarum non excedit. Pelagus objectum “Micro printing” est onus post-processus reducere et textile imprimendi productum cum aqua vastitate enucleare, altam celeritatem colorare et manus mollis sentire.

1.2.3 Application of thickeners in excudendi

In processu imprimendorum textorum, pastes imprimendi quamdam firmitatem chemicam, adhaesionem, madefactionem et formationem cinematographicam habere oportet; ne sanguinem imprimendi et exemplaria cum bona claritate obtineant, agentia incrassata addenda sunt ad pastes imprimendas ad viscositatem emendandam, aquam adtrahendo et minuendo capillarium effectus augendi. Usus farinae typographicae originalis magni momenti est, natura sua perficiendi typographiam crustulum imprimendi determinat, et qualitatem operis impressi directe afficit. Propterea opusculum impressorium debet habere rhologiam idoneam, varias rationes typographicas, varias processus typographiae et varias notas exemplaris, rhologia pastae usus etiam variat; ② Certam habet stabilitatem in crustulum originalem factum, curet ut in repositione non facile degeneret, facta in crustulum colorem varios effectus mechanicos quos agitando sustineat; ③ Colorem habere non potest, vel parum coloris nullam affinitatem fibra habere, crustulum bene tingens rate et facile mundare debet, ut scilicet farinam non attingat tingendis rate et minus aqua purgari possit.

Pastes imprimendi in crassiores naturales dividi possunt, crassiores emulsificati, crassiores synthetici etc. Oleum/aquae emulsificatae crassiores factae ex alkanibus provectis substituti sunt a spissis syntheticis propter vapores environmental difficultates exhaustorum.

Islam M T et al. usus sodium alginate et aloe vera gummi, ut pastes excudendi, quae frictiones optimae velocitatis, sed humilis color fixationis; Abdel-Halim E S et al. comparavit effectum typographicum hydroxypropyl cellulosum et acidum polyacrylicum hydroxypropyl cellulosum modificatum sicut crassiores et conclusum polypropylene hydroxypropyl cellulosum modificatum colori cede fabricarum emendare posse. Etsi anionicum syntheticum crassiores cum solidis infimis et altis-formantibus rates late usi sunt, quaestio electronicae sensibilitatis, quae minui vim viscositatis notabilem causare potest, nondum solutum est; et non-ionica synthetica thickeners cum bono electrolytico resistente

 applicationes strictas habent ex effectu pauperum crasso et alta dosis.

1.2.4 Usus adhesivorum excudendi

Ligones magni momenti sunt in pastis pingendi pingendi et ligandi adhibentur pingendi superficiei fabricae formando cinematographicam. Investigatio in pingendi technologiam typographicam intendit repugnantiam inter colorum velocitatem et sensum, ac praeparatio adhaesiva cum magna compaginatione et mollium sensuum est principale directio investigationis ad meliorem qualitatem pingendi imprimendi. Illa mollem sensum habet et colorem velocitatem vel siccum vel umidam frictionem velocitatem meliorat, haec utilitas summae elasticitatis, caloris et frigoris resistentia, bona permeabilitas et sensus mollis, sed carior. Ad meliorem velocitatem pingendi fibrarum, crosslinkers adduntur etiam ad crustulum typographicum. Tria dimensiva reticulatio inter crosslinker et fibra moleculae fabricata melius sopingendo velocitatem et festinationem frictionem auget, sed fabrica tendit in flavum et rigescit ad tactum coctum in calidis temperaturis. Ligans HD650 altiorem apparentem profunditatem colorum, saponis velocitatem et festinationem frictionem quam commercium ligatorum in promptu habet, et fabricae impressae molliorem sentiunt. Usus ligatorum functionis in tingendis vel excudendis modus efficax est ad meliorem usum tingumentorum acidorum in nylon impressione et ad meliorem alacritatem ad sudorem alkalinem reducendum et maculam albam nylon per colores acidicos. Ligans etiam meliorem facit homogeneitatem de tinctis tinctis polyester calido liquefacto inficiendo, fluitantem tinctura in fibrarum superficie minuit, et onus minuit deminutivam purgationem et ablutionem.

1.2.5 Polyester / nylon fabricas exornationes imprimendi proprietates et emendationem methodi

Textilibus indumentis traditis comparati, textilia decorativi et muneris decorati sunt, et magna requiruntur ad speciem ac materiam, ut difficilius reddantur technica eorumque effectio quam textilia ordinaria[82]. Polyester/nylon textilia decorativa necesse est ut sint tam commoda et aesthetice grata, non solum secundum mollitiem, tactum et rigorem solatium, sed etiam secundum colorum venustaium, lustrum naturale, bonum colorem velocitatem et differentias gravis colorum. Tincturae acidicae discutiuntur ad polyester/nylon fabricas tingendas et imprimendas. Cum nylon contentum polyester/nylon humile est, fucos dispergunt cum differentiis respective parvis inter polyester et nylon adhiberi possunt [83]. In praxi, polyester/nylon fabricae decorativae plerumque polyester et nylon sunt, ita solum colores dispersae ad imprimendum adhiberi possunt. Sicut polyester/nylon fabricae decorativae duas fibras continent cum diversis proprietatibus structuralibus, quae saepe ad processum excudendi complexum inducunt, altum effluxum missionem et velocitatem colorum, modi saepe in praxi adhibentur ad emendandas proprietates typographicas fabricae.

(1) Discriptis dyestuffis recti: dyestuffos dispergunt bonam affinitatem habent ad polyester et affinitatem nylon pauperiorem, et dyestuffos dispergunt varios colores umbras in polyester et nylon (pauper homochromaticitas), quae in dispari colouratione fabricae provenit.

(2) Pre-tractatio: Praetractatio dimensionis seu textilia blank imprimendi effectum directe afficit. Effectus capillaris fabricae, summa perfectio bona est, superficies fabricae natantis color minus est, et humidum fricare resistentia, color velocitas melior est. Cottonis textilia mercerised, fibrarum structura et forma mutantur, non solum sericum nitorem obtinet, sed etiam velocitatem et robur et colorem emendantur.

(3) Optimatio processus tingendi: optimize processus typographiae et condiciones ut quam maxime tingunt, auxilia et aqua adhibeantur sub praemissa optimalis effectionis typographiae, ut effectum energiae salvificae et emissionis reductionem consequantur.

Current status flammae retardant investigationem in polyester/nylon textilia decorat

1.3.1 Flamma retardant methodi polyester/nylon textilia decorat

Cum modernizatione civitatum, consumptio omnium textorum ad usum civilem et industrialem celeriter augetur, praesertim ad fabricas decorativas interiores, vehiculorum upholsteriam et culcitram [84], quarum pleraeque fibrae chemicae fiunt. Pleraque textilia flamma non retardant et accendi facile possunt et spargi ad ignes causandos, unde numerus ignium textilium causatus augetur. Flamma retardant textilia luculentum commodum ad prohibendos ignes et ad casus ignis minuendos, sicut non solum incidentia ignium minuunt, sed etiam augent tempus evasionis et sic augent verisimilitudinem superstitialem [85]. Nuper conscientia flammae tarditatis in textilibus aucta est et investigatio in flammam retardatio in textilibus operam dedit ut ignis accidentia minueret et detrimenta necessaria vitaret.

Polyester/nylon fabricae ornatae in hoc studio adhibitae sunt valde flammabiles ad altas temperaturas et prona sunt ad stillantem in combustione liquefacta, quae periculum ignis divulgationis causare potest et neglegi non debet ut ignes ne damnum significantes efficiant.

Plures sunt variae rationes flammae textilia retardandi, quae maxime in copolymerisationem dividitur, modos mixtionis et curationi pendentes quomodo flamma retardans additur et introducitur in processu fabricando. Methodus copolymerisationis plerumque pro fibris syntheticis adhibetur ac copolymerisationem polymerorum monomerorum implicat cum flamma reactiva retardantiae ita ut vinclis polymerorum macromolecularibus adstringantur et deinde in flammam fibrarum retardant. Copolymerised textilia commoda repugnantis ad lavationem et toxicitatem infimam habent, sed incrementa harum flammarum retardantiae sunt altae. Productio technologia magis implicata est. Methodus cohaerens co- mixtionis homogeneae flammae retardantiae in liquefactio polymi statu implicat antequam contorqueat fibras syntheticas cum proprietatibus flamma retardantibus producere. Permixtio methodi habet commoditatem frugaliorem, simpliciorem, efficaciorem in usu flammae retardantium et renitentium ad ablutionem [86]. Quatuor methodi principales conficiendi sunt intingendi et siccandi, impregnati et siccandi, liniendi et spargendi [87, 88]. Praecipua methodus est utendi chemicae compages, adsorptionis et depositionis, et compages ut flammam retardat in fabrica ad obtinendum effectum flammae retardantis. Horum modi commoda sunt ut flammae minus requirant retardant, minus pretiosae ac late habeant, sed incommodum minus diuturnum habent.

1.3.2 Combustio notae polyester et nylon

Punctum liquescens 256°C et punctum ignitionis 45°C. Ergo fibrae polyesterae ante compositionem scelerisque emollient et reformident, liquefaciunt et liquentiae guttae liquefactae formant. Per processum combustionem, polyester magnam vim caloris in contactu cum fonte caloris haurit et corrumpi scelerisque patitur. Residuum carbonised et volatile combustibiles in compositione productorum in contactu cum oxygenio ardent, radicales liberas activos generantes, quae gradatim polyester degradationem trigger, dum calor generatus ulterius aggravat scelerisque degradationem polyester, cyclum formans [89, 90]. Praeterea polyester habet fusionis pauperum et prona ad formandas foveas cum fuligine et scintillis exposita.

Nylon habet LOI circa 21 et est etiam fibra combustibilis. Punctum nylon ignitionis est circa 530°C et punctum liquescens 215°C-253°C. Cum nylon ardet, guttae liquefactae fiunt. Cum expositae caliditates, nylon valde refugit, inde in stillicidiis fusilibus se exstinguentibus, sed quae facile alias materias flammabiles urere possunt, ducens ad ignis propagationem. Cum nylon mixtum vel intertextum cum fibris aliis non thermoplasticis, fibrae non thermoplasticae tamquam sustentationem agunt, nylon magis uri. Per combustionem nylon atomos oxygenii et nitrogenis in sua catena principali continet, quae magnam vim caloris emittunt et alios vapores combustibiles efficiunt, maxime CO2, NH3, H2O, etc. et paucos vapores toxicos, maxime CO, NO, HCN; etc.

1.3.3 Flamma retardat pro polyester et polyamide et eorum flamma machinationes retardant

The three elements of combustion are combustible materials, combustible materials and ignition sources, so the flame retardation of textiles should also be approached from these aspects. The main mechanisms of flame retardancy in textiles today are the surface coverage theory, heat absorption, cohesive phase flame retardancy, gas phase flame retardancy and the molten drop effect. The surface coverage theory means that the flame retardant can form a molten substance when heated and cover the surface of the fibre, forming a film; the ignition point of the flame retardant is higher than the ignition point of the fibre, thus acting as an air barrier. Heat absorption refers to the fact that flame retardants will reduce the surface temperature of the fabric through heat absorption, dehydration, decomposition or phase change and other heat absorption reactions, thus slowing down the burning rate of the fabric. Condensed phase flame retardant means that the flame retardant inhibits the production of combustible gases in the solid phase and also inhibits the decomposition of free radicals to achieve a flame retardant effect. Vapour phase flame retardancy means that the material generates a large number of free radicals during combustion, accelerating the gas phase combustion reaction. The main function of vapour phase flame retardants is to convert the more active free radicals into more stable ones, thus inhibiting combustion. The melt-drop effect means that thermoplastic fibres shrink rapidly when heated, and at the same time curl and melt to drip away from the flame, reducing air contact and thus preventing combustion.

Flamma retardantis etiam secundum flammam retardant mechanismum indicari potest, et flamma retardat varias machinas flammae retardant simul. Communes flammae retardantes pro polyester et nylon et flamma machinationes retardant sequentia includunt.

(1) Flammae halogenatae retardantes: Hae flammae retardantes emittunt gas hydrogenium halide calefactum, quod non-flammabile est, ita assequentes partes velit aeris. Eodem tempore, gas hydrogenii halide cum magis reactivum liberum radicalis valentius agere potest ut radicales liberi minus reciproci, ita combustionis retardationem. Flamma halogenata retardantes magnas copiae fumorum toxicorum combustorum et nunc propter suum restrictum usum augentur.

(2) Inorganicum phosphas flammae retardantiae: Haec maxime includent flammam phosphori rubri retardantes, Ammonium phosphatum sales, et salia Ammonium polyphosphata. Hae flammae retardantes polymerum dehydratum et carbonise cum in primis combustionis stadiis putrescit, ita in superficie fabricae iacum efformant et ab oxygeni secludunt. Cum temperatura 400°C excedit, phosphates DECREMENTUM reactionem patiuntur ad formandum polyphosphates, qui fibras etiam ab oxygeni segregant, ita flammam retardant effectum[92]. Mixtura ex DMDHEU (nomen Freerez 900) et TMM (nomen artis Aerotex M-3) adhibitum est ut agentis crucis-coniunctio ad nylon 6 conficiendum et ad nylon 66 fabricas cum proprietatibus flamma retardantibus. Ostensum est cum systema FR-DMDHEU-TMM adhibitum pro nylon 6 et nylon 66, 40% FR cum fabricae nylon in perpetuum conjunctae inde in flammam retardant durabilem, perisse ob crucis nexum FR. cum TMM formare polymeric reticulum structuram.

(3) Flamma phosphata ester retardantis: Cum flamma phosphata ester retardants calefiat, se occurrunt cum oxygenio ad acidum oxygenatum et acidum phosphoricum producendum, quod phosphori volatilisum non faciunt. Acida oxygenata siccitatem hydroxyl-continentis compositorum in carbonem catalysinunt, reducendo massam amissionem materiae et quantitatem materiae combustibilis formatae [94]; Acidum phosphoricum calefit ad acidum metaphosphoricum producendum et tandem acidi polyphosphoricum vitrinum. Oxydum phosphorus non-volatile et polyphosphas vitreus humor superficiem materiae arcte tegunt et eam ab aere separatam servant.

(4) Nitrogen-phosphori flammae retardantes: Cum hae flammae retardantiae calefiunt vel uruntur, phosphorus et nitrogen primum structuras phosphoramidite formant, vincula phosphoro-nitrogenii formantia, quae flammam retardant proprietates polyester textorum valde emendare [96]. Li Fen[97] et alii boni eventus consecuti cum phosphoro-nitrogenio aquae innixae flammae polyurethanae retardantes in textis polyesteris, quae ad tactum molles et siccae erant, repugnantia bene lavacra, B1 verticalis combustionis effectus, summa coloris differentiam habuit. minus quam 4.0 et parum momenti ad exempla mutatio coloris fabricae.

(5) Flamma intumescentium retardantia: hae flammae retardantes cum calore pugnant, possunt formare carbonis stratum uniformem in superficie fabricae, quae partes caloris velit, dolor obice et fumi suppressio, et bonum effectum habet. anti-liquata, sic flamma retardat effectum mirabilem [98]. Flamma intumescens retardata basically tria elementa constant: fons acidus, fons carbonis et fons gas. Partes efficientis in flamma retardationis agere potest simpliciter, innixus effectui suo synergistico. Zhijun [99] flamma intumescens retardat cum ammonium polyphosphate (APP), pentaerythritolum (PER) et melamine (M EL) ad flammam retardans fabricarum polyestrarum conficiendis ad halogen-liberum producendum, flammae retardant fabricas polyester valde efficaces.

Propositum et significatio investigationis de hoc argumento

Polyester/nylon textilia altam vim habent et bonam abrasionem resistunt, et ad tactum molles et leves sunt, cum praestantia opera, et saepe ad interiorem seu autocineticam ornatum adhibentur.

Tinctura polyester/nylon textilia maxime fit cum tingutionibus acidis dispergendis, tinguis reciprocis, utens duplicem gradum vel duos balnei tingendi methodum, ex tingendi processu multipliciori, aquae superiori consummationis, efficientiae inferioris et plus difficilis est homogeneitatem tinctae fabricae moderari.

Fere polyester/nylon textilia tinguntur vel impressa utuntur dyestuffis dispersis. Differentia affinitatis inter fibras polyester et nylon et dyestuffos dispergere facile potest differentias ducere in proprietatibus typographicis et tingendis duarum fibrarum secundum colorem umbrae, coloris splendoris et coloris velocitatem, et post curationem typographicam et tingendam ( e.g. purgatio reductio) grave negotium est. Et fibrae polyester et nylon flammabiles sunt et flamma retardatio polyester/nylon textilia vel textilia decorata est etiam exitus qui appellari debet.

Although there are transfer printing, paint printing and inkjet printing methods for printing polyester/nylon fabrics, direct printing has the advantage of bright colours, high pattern definition, a soft hand and low processing costs. In the subsequent washing process, due to the small affinity of disperse dyes for nylon, there is a risk that the floating colours are washed away into the soap or wash solution, which again stains the non-printed area of the fabric. Paint printing is a very low water consumption and low pollution process, but the use of thickeners and crosslinkers can lead to a change in the hand feel of the fabric.

The difference will also have an effect on the colour fastness of the fabric.

Core idea est uti brevi processu pingendi imprimendi ad consequendam directam impressionem dispersae dyestuffi, i.e. per syntheticas spissationes, ligatores et liquidum dyestuffum dispergendum, sicut medium imprimendi, tegumentum imprimendi et exsiccatio, sequitur caliditas aeris calidi Coloris evolutionis et evolutionis. fixatio dyestuffi fit per tegumentum imprimendi et desiccatio, sequitur caliditas calidi aeris conformationem. Haec ars ad bonum effectum adhibita in tingendis polyester textis calidis liquefactis [79, 80] et in applicatione technicae artis micro-typicae pro dyestuffis acidorum in nylon textis [34, 81].

Propterea, ex supra analysi innixa, hoc propositum postulata rectae typographiae et flammae retardant fabricarum ornamentorum polyester/nylon finitionem, et problemata quae in processu polyester/nylon decorativae fabricae tingendae imprimendae occurrunt et alloquitur. Post impressiones fabricae colorem lucidum, bonum homochromaticum, mollis manus, bonum colorem velocitatem habet, nec opus est ad sequentem lavationem vel macerationem vel minutionem. Fundamentum theoreticum praebet ut industriae salutaris et emissionis reducendae productionis industriae et viridis et tuta textilia consequantur.

Praecipua elementa investigationis thematis

Praecipua investigationis elementa huius argumenti sunt.

(1) Protegendo et excudendi perficiendi liquoris fucos dispergunt ad polyester/nylon textilia. Respectu problematum complexorum discursuum/acidicarum vel processuum reactivorum dispersorum, decolorum ieiunium et gravis pollutionis machinarum polyester/nylon, temptatum est ut solum colores dispersos ad imprimendas fabricas polyester/nylon et colores comparando fastus et color notae dispersae colorum diversorum colorum et structurae in polyester, nylon et polyester/nylon textilia, colores summae velocitatis dispersae colores, bonum homochromaticum et altum colorem cedunt polyester/nylon textilia muniebant. Dissiguntur dyestuffis cum summa celeritate colorum, bona homochromaticitas et color altus in textis polyester/nylon cedunt, et quae a purgatione deminutivae liberatae sunt muniebant.

(2) Optimization of the printing process for polyester/nylon texts decorative. Effectus praetractationis de impressione typographiae fabricae investigatur adhibitis electissimis dyestuffis dispersis, et effectus crassiores, ligatores et coquendi condiciones in diversis temperaturis et temporibus in agendis typographicis fabricarum polyester/nylon. Notio “Micro-printing” est industria salutaris et amicabilis productionis ad fontem obtinendum.

(3) Nonnulli liquoris urinae tinctores selecti adhuc elaborant soipationem ad boni coloris celeritatem consequendam, cum in textis polyester/nylon impressis, colore consecuto leviores sunt. Ad levitatem harum tincturarum compensandam, compositio dyestufforum et fucorum dispersorum in fabricas polyester/nylon imprimendi adhibita est ad explorandum optimam rationem dosis utriusque ad altitudinem coloris altitudinem et velocitatem perficiendam.

(4) Ad investigandum flammae retardant effectum flammae retardantes cum bona flamma retardant effectum polyester et nylon in polyester/nylon, et flammam retardantiae invenire cum bona flamma retardant effectum in fabricas polyester/nylon, quae sensum non tangunt. textilia et velocitatem habent bonam, ut per consummationem polyester/nylon textilia decorativa non solum bonum imprimendi effectum habeant, sed etiam optimum processum flammae retardant.

Protegendisque et faciendis excudendi colores disperse pro polyester / nylon

Introductio

Polyester is often printed with disperse dyes; nylon is easier to dye and print with acid dyes, disperse dyes, reactive dyes and direct dyes, but most of them have poor fastness, incomplete colour and can only be dyed in light colours, so acid dyes are often chosen for printing. The differences in fibre structure and dyeing properties of polyester/nylon fabrics lead to great variations in the choice of dyestuffs and processes, making dyeing and printing difficult [100]. Most polyester/nylon fabrics are dyed using the two-bath method, i.e. by selecting disperse and acid dyes with high colour fastness and evenness and dyeing polyester/nylon fabrics using the two-bath process, or by using disperse/reactive dyes in one bath. The nylon part is then dyed with acid dyes. This method is inefficient and time-consuming, and the large amount of reductive washing and water washing results in a waste of water resources. 2) Disperse dyes stain nylon: Disperse dyes bond to the carbonyl groups in the nylon macromolecule chain by virtue of hydrogen bonds and van der Waals forces, so that when the polyester part is dyed with disperse dyes, the nylon part of the polyester/nylon fabric is easily stained with disperse dyes. The disperse dyes must be washed off by extensive reductive washing.

Cum nylon contentum polyester/nylon humile est, colores dispersos eligi possunt quae differentiam inter polyester et nylon relative humilis habent. Attamen problemata sequentia existunt cum usus dispergendi tinguit solas: 1) tenuium colorum velocitas: in processu typographico polyester/nylon textilia utentes tingui soli dispergunt, structurales differentias inter polyester et nylon facile ducere possunt differentias in adsorptione et fixatione. tingui in binis fibris dispergunt, et debilior effectus spargendi tincturas in nylon fibris facile perducere potest ad plures fluitantia colores in processu typographico, inde in tenui colore velocitatem. Color velocitatis est pauper, in quibusdam tantum 2 gradus. In sapatione et subsequenti lavatione, fibrarum superficies facile re- maculata a dyestuffo dispersa est, exempli causa. in locis non-typis humus albae, quae graviter afficit colorem festinationem ad aridam/humidam frictionem. (2) Polyester/nylon fibra homogeneitas duo-phase: ob differentias in via polyester et nylon cum dyestuffis et in diametro componuntur, superficiei specifica et structura fibrarum, maxime e dyestuffis dispersis, quibus polyester et nylon tinguntur. significant mutationes colorum et vibrancy colorum exhibens. (3) Incompleta chromatographia: Cum plurimum diffugiunt dyestuffos in nylon tenuitatem coloris habent, indigent ante usum tegendo et saepe leviores colores in tingendis et imprimendis processibus adhibentur.

Usus solius urinae tinguit ad imprimendas fabricas polyester/nylon optimas optiones, si praedictae difficultates solvi vel emendari possunt, meliori processu typographico et tingui congruo eligendo. Cum hoc project quadrigis's “Microform technologia pro polyester dispergere dyestuff”Ideam utendi novi “Micro printing” technicae fabricarum polyester/nylon est explorare effectum diversarum structurarum dispersarum dyestufforum in fabricatione typographica polyester, nylon et polyester/nylon textilia, et eligere fucos idoneos ad imprimendas fabricas polyester/nylon cum summa velocitate coloris. Effectus dispersorum fucorum diversarum structurarum in polyester, nylon et polyester/nylon textilia investigata est, et colores summae velocitatis tinguiorum dispersarum idoneae, nullae purgatio minutivae et boni coloris et levium constantiae delecti sunt.

Core idea novi “Micro printing” technology est “utere quod tibi necessarium est” to achieve direct printing with disperse dyestuffs, which, despite the low content of active substances (thickeners, binders, dyestuffs) used, can still achieve the required printing effect and the subsequent washing task lighter and with excellent colour fastness.Trace” refers to the amount of components effective applied to the printing medium, eo minus meliore, modo ut requisita typographica occurrant, v.g. eligendo syntheticam spissiorem cum solidis humili contentis et viscositatis altae, ligantis adhaesionem altam, formationem cinematographicam, rate altam fixationem et impulsum humilem in sensu fabricae, et tinctura quae saturatam adsorptionem seu fixationem non excedit. de fibris. Dyestuffus adhibetur ut medium imprimendi, post imprimendum directum et exsiccans, et postea ad altas calores coquitur ad solidationem dyestuffi perficiendam.

 (2) Ad investigandas differentias in obtentu Typographiae tinctorias dispergendas in tribus textis, comparando varias curationes post-printing; (3) Ad recognoscendas rationes varias excudendi peractas disiunctiones dyestufforum in diversis fibris, dividendo relationem inter vires hypotheticas de dyestuffis dispersorum et de eorum agendi ratione imprimendi.

 Materiae experimentalis et apparatus

2.2.1 Fabulae, colores et pharmaceuticas

Fabric: polyester double crepe, 100% polyester, 83.3 dtex x 83.3 dtex, 76g/m2; nylon, 100% nylon, 7 8.43 dtex x 78.43 dtex, 84g/ m2; polyester/nylon fabric, 87% polyester, 13% nylon, FDY 73.33 dtex x 177.78 dtex polyester/nylon composite, 100g/ m2. m2. by Wujiang He Sheng Zhi Mei Fashion Fabrics Co.

Liquid disperse dyes: homemade in the laboratory, disperse dyes filter cake from Zhejiang Wanfeng Chemical Co Ltd, Jiangsu Yabang Dyestuff Co Ltd, Zhejiang Shanayu Dyestuff Chemical Co Ltd, Jihua Group.

Medicines.

PharmaceuticalsLevelManufacturersDicta
PTF-SIndustrial gradeCommercially availableSynthetic thickeners
FC650Industrial gradeSelf-produced by the project teamBinders
Synthetic detergentsIndustrial gradeShanghai White Cat Specialty Chemicals Co.Synthetic detergents

2.2.2 Experimental apparatus

Modi experimentalis et effectus probat

2.3.1 De processu excudendi

Processus fluxus: fabricae → excudendi → exsiccatio (75℃ 2min) → caliditas ustus (180℃ × 1min) → (soap)

→ lavatio → operis ( 80℃× 15min ) → operis .

Soaping processus: synthetica purgat 4g/L, ratio balinei 1:50, 50°C x 45 min.

Medium Typographia: 3.0% (fractio massa, eadem quae infra) synthetica crassior PTF-S, 1.0% ligans FC650, 2% liquida tingunt, reliqua aqua.

2.3.2 Color velocitatis

Color festinatio ad frictionem: probata in M ​​odel 670 Color Fastness ad Frictio Tester secundum GB/T 3920-2008 Color Fastness ad Frictionem Test for textorum, aestimavit secundum GB252-1995 Grey Sample Card pro Color aestimatione.

Color velocitatis ad soaping: probatum secundum GB/T 3921-2008 “Color fastigium tium textorum Soaping fastigium: methodus 2”, aestimavit secundum GB252-1995 “Griseo specimen card pro perpendendis color tinguere”.

Color fastigium ad sublimationem: probatum secundum GBT 5718-1997 Color velocitatem testum textilium Color velocitas ad calorem siccum (excepto torculari calido), gradus secundum cum GB252-1995 Grai specimen chartae perpendendi colorem inficiens.

2.3.3 K/S valores ac color eigenvalues

Valores K/S, L*, a* et b* in Ultra Scan XE mensurati sunt colourimetris computatoriis. Conditiones probatae erant D65 fons lucis, 100 angulus aspectus, specimina in 4 stratis complicata et mediocris 4 testium sublata est.

Color differentia computatur per aequationes (2-1) ad (2-7), unde fit in L*, a*, b*, C*, H* et ΔEcmc.

2.3.4 Firmamentum relativum rate

Vis relativa valorum K/S (II) computatur secundum aequationem (2-8) et notat ratam fixationem fabricae soapatae respectu fabricae inconsolutae, postea ad ratem fixationem relativam referendam.

RF (2-8)

Ubi, (K/S)1 – apparent color profunditate soaped fabricae; (K/S)2 – apparentis coloris altitudinem unsoaped fabricae.

Effectus dispersionis colores in K/S valores et effusio maximam necem textilia

Factio 41 liquoris domi factae fucos dispersos investigatum est utens methodo in 2.3.1. Valores K/S et maxima effusio aequalitatum trium textilium impressorum (polyester, nylon et polyester/nylon) post sopationem comparati sunt.

Ubi: λ 1 absolutus valor differentiae inter maximam effusionem necem tingui in polyester et nylon et λ 2 est absolutus valor differentiae inter maximam effusio necem tingui in polyester et polyester/nylon.

Mensam 2-1 K / S valores maximam effusio aequalitatem ad dispergendum colores in tribus textilia (λ1 > 0)

Tinctura nomine  K/S valores  λmax/nmλmax/nm
Tinctura structuramPETPAPET/PAPETPA PET/PAλ 1 λ2
Blue 199Azo15.610.747.46640600635405
Blue 257Azo19.8812.1614.056155856003015
Blue 823Azo17.17.1910.145806006002020
Orange 889Azo9.815.434.47435455440205
Red 887Azo16.9312.6312.415205355301510
Blue 77Anthraquinone10.518.314.9630615625155
Blue 284:1Azoheterocyclic15.023.717.1620605625155
Blue 367Azoheterocyclic13.429.437.34615625620105
Red 179Azoheterocyclic17.216.1913.21535545530105
Red 881Azoheterocyclic17.687.799.92520510520100
Red 153Azoheterocyclic13.9517.4114.82520530520100
Blue 79Azoheterocyclic10.468.528.75620610620100
Red 8960Azo15.8210.279.03530520530100
Brown 61Azo10.279.1711.12440450440100
Red FBAnthraquinone4.785.384.8852052552050
Red 92Anthraquinone5.548.366.6452052552050
Purple 63Azo11.8814.7211.6557056557050
Blue 183Azo5.527.885.5262062562050
Blue 183:1Azo3.074.562.7962062562050
Red 4088Azo16.9312.6312.4153554053055
Orange 73Azo14.269.649.6745546046055
Blue 60Anthraquinone7.254.935.6268068568555
Yellow 211Azoheterocyclic11.938.3310.9445045545555
Yellow 4063Azoheterocyclic5.383.472.2339539039055

Table 2-2 K/S values and maximum absorption wavelengths of disperse dyes after printing on three fabrics (λ1=0)

From Tables 2-1 and 2-2 it can be seen that

(1) Maximum absorption wavelength: The apparent colour yield of the fabric is determined by testing the K/S value of the fabric on the colourimeter at the maximum absorption wavelength.

①Disperse dyes with an absorption wavelength difference λ1 of not less than 15 nm

Seven liquid disperse dyes (Red 887, Orange 889, Blue 199, Blue 77, Blue 284:1, Blue 257, Blue 8 23) had a maximum absorption wavelength difference higher than 15nm on polyester and nylon fabrics; this indicates that these dyes have poor homochromatic properties on polyester and nylon. The choice of these dyestuffs for polyester/nylon printing can lead to pinching or colour changes, which can degrade the performance of the printed fabric.

Dispergere colores effusio necem X de differentia λ1 nm

Sunt 7 liquidae colores disperse (ruber 153, rubeus 179, ruber 881, rubeus 8960, caeruleus 79, caeruleus 367, fuscus 6)

(1) Maxima differentia in effusio necem inter polyester et nylon textilia est 10nm; inde indicat quod hi tingui etiam minus homogenei sint in polyester et nylon.

However, the printing results on polyester/nylon fabrics show that the consistency of colour and light between polyester/nylon and polyester fabrics is good due to the low nylon content of the nylon component and can meet the requirements of use. With the exception of blue 367 and red 179, the difference between the maximum absorption wavelengths (λ2) of the five liquid disperse dyes (red 153, red 881, red 8960, blue 79 and brown 61) on polyester and polyester/nylon was 0 nm, which indicates that these dyes have good homochromatic properties on polyester/nylon fabrics and that their colour light remains largely unchanged.

(iii) Disperse dyes with an absorption wavelength difference λ1 of 5 nm

Decem liquidae colores dispergunt (flavae 211, flavae 4063, rubrae FB, rubrae 92, rubrae 4088, aurantiacae 73, violaceae 6 3, caeruleae 60, caeruleae 183, caeruleae 183:1) maximam differentiam ostendit in effusio necem 5 um in polyester. et nylon textilia; hoc indicat bonum homochromaticum inter hos colores polyester et nylon. Quinque liquidi colores (rubrum FB, rubrum 92, violaceum 63, caeruleum 183, caeruleum 183, 1) differentiam praebuerunt in effusio maxime necem (λ2) 5 um inter polyester et polyester/nylon, cum quinque liquores tingui (flavi 211 , flavis 4063, rubra 4088, aurantiaca 73, hyacinthina 60) differentiam ostendit in effusio maximorum adsum (λ2) 0 nm inter polyester et polyester/nylon.

④Disperse dyes with an absorption wavelength difference λ1 of 0 nm

Seventeen liquid disperse dyes (yellow 114, yellow H3R, yellow 163, red 73, red 86, red 135, red 16 7, red 177, red 278, red 885, red 3073, red 4089, orange 30:3, orange 44, purple 93, green 9, brown 19) had a maximum absorption wavelength difference of 0 nm on polyester and nylon fabrics, except for two liquid disperse dyes (red 177, red 4089) which had a larger difference (λ2) on polyester and polyester/nylon. This indicates that these dyes have good homogeneity and consistency of colour and light on the three fabrics (polyester, nylon and polyester/nylon) and are not susceptible to pinching problems.

(2) K/S value: The apparent colour yield of a fabric reflects the shade of colour and depends on the strength of the interaction between the dye and the fibre, which can lead to differences in the colour yield of the same dye on different fibres; of course, the tissue specifications of the fibre or yarn, the concentration of the dye and the dyeing process conditions can also affect the differences in the colour yield of the same fibre. Obviously, differences in K/S values can also affect the homochromaticity of polyester/nylon fibres.

① Difference in K/S values on polyester and nylon fibres

In general, the K/S values of disperse dyes are higher on polyester fibres than on nylon fibres; some dyes have a higher K/S value difference (not less than 5.0), e.g. 9 liquid disperse dyes (yellow 114, yellow H3R, red 135, red 278, red 881, red 8960, blue 257, blue 284:1, blue 823); others have a smaller K/S value difference (not more than 2.0), e.g. 8 liquid disperse dyes (yellow 163, yellow 4063, red 179, red 885, blue 79, green 9, brown 19, brown 61). For example, 8 liquid disperse dyes (yellow 163, yellow 4063, red 179, red 885, blue 79, green 9, brown 19, brown 61) and 15 liquid disperse dyes (yellow 211, red 73, red 86, red 167, red 887, red 307 3, red 4088, red 4089, orange 30:3, orange 73, orange 889, blue 60, blue 77, blue 199, blue 367) had K/S values no higher than 2. (Blue 367) with K /S values ranging from 2.0 to 5.0.

A small number of disperse dyes had higher K/S values on nylon fibres than on polyester fibres; five liquid disperse dyes (red 92, red 153, violet 63, violet 93, blue 18 3) had significant differences in K/S values (difference above 2.0) and four liquid disperse dyes (red FB, red 17 7, orange 44, blue 183:1) had insignificant differences in K/S values (difference not above 2.0). (183:1).

② Differences in K/S values on polyester and polyester/nylon fibres

The K/S values of disperse dyes on polyester fibres are higher than on polyester/nylon fibres due to the presence of nylon; 16 liquid disperse dyes have a higher K/S value difference (not less than 5.0) (yellow 114, yellow H3R, red 73, red 135, red 278, red 881, red 3073, red 4089, red 8960, orange 889, blue 77, blue 199, blue 257, blue 284: Red 887, Red 4088, Orange 30:3, Orange 73, Violet 93).

A few of the disperse dyes have higher K/S values on polyester/nylon fibres than on polyester fibres, but none of the differences in K/S values are significant (no more than 2.0) and there are seven liquid disperse dyes (red FB, red 92, red 153, red 177, green 9, brown 19, brown 61).

(iii) Relationship between dye structure class and K/S values

Eleven monoazo disperse dyes (red 73, red 167, red 278, red 887, red 4088, red 4089, red 8960, violet 63, violet 93, blue 199, blue 257) and five heterocyclic disperse dyes (yellow 114, red 153, red 179, red 885, red 3073) yielded deep colours on polyester and nylon fibres. The anthraquinone dyes were lighter in colour on polyester and nylon fibres.

In summa, 1) the following disper- tingues are available for polyester and nylon with a difference in maxime effusio necem non altior quam 0-5 um: 15 colores monoazo (flavus 163, ruber 73, ruber 135, ruber 167, ruber 278, ruber. 4088, rubra 4089, aurantiaca 30:3, aurantiaca 44, aurantiaca 73, violacea 63, viola 93, caerulea 183, caerulea 183:1, brunnea 19), rubra heterocyclica 8 (flava 1 14, flavus 211, flavus 4063, rubra. 177, lutea H3R, rubra 885, rubra 3073, viridis 9) et anthraquinone 4 colores (rubrum FB, rubrum 92, rubrum 86, caeruleum 60). Flavus 1 14, Flavus 211, Crocus 4063, Rubeus 177, Crocus H3R, Red 885, Red 3073, Viridis 9) et anthraquinone colores quatuor (Red FB, Red 92, Red 86, Blue 60).

(2) Disperse dyes with a K/S value of not less than 10.0 for polyester and nylon are: 12 single azo dyes (red 73, red

153, red 167, red 278, red 887, red 4088, red 4089, red 8960, violet 63, violet 93, blue 199, blue 257), four heterocyclic azo dyes (yellow 114, red 179, red 885, red 3073).

(3) Disperse dyes with a K/S value of at least 10.0 for polyester/nylon: 11 monoazo dyes (red 73, red 153, red 179, red 887, red 4088, red 4089, violet 63, violet 93, blue 257, blue 823, brown 61) and 3 heterocyclic azo dyes (yellow 114, yellow 211, red 177).

Effect of disperse dyes on the colour fastness of fabrics

The colour fastness (soap fastness, dry/wet rubbing fastness and sublimation fastness) of the 41 homemade liquid disperse dyestuffs on the three printed fabrics (soap washed) are shown in Tables 2-3 and 2-4.

From Tables 2-3 and 2-4 it can be seen that

1) Colour fastness to soaping

Without optimizing the printing process, the disperse dyes had good soaping fastness (≥3-4) on polyester fabrics. Red FB, Red 86, Red 92, Red 135, Red 177, Orange 30:3, Orange 44, Orange 889, Violet 63, Violet 93, Blue 60, Blue 77, Blue 183, Blue 183:1, Green 9, Brown 19, Brown 61) achieved grade 4.

There were no disperse dyes with soap fastness of 4 or higher on nylon fabrics, and only 11 dyes with better soap fastness (≥3) (yellow 163, yellow 4063, red 86, red 135, red 8 85, orange 889, blue 60, blue 183, blue 183:1, green 9, brown 61). This is because although the disperse dyes are able to bind to the carbonyl groups on the nylon macromolecule chain by hydrogen bonding and van der Waals forces, the low binding power and weak bonding resulted in most of the floating colours being washed off under the more severe soaping conditions.

Ob proportionem nylon humilis, colores 27 (flavus 114, flavus 163, flavus 211, flavus 4063, flavus H3R, ruber F B, ruber 86, ruber 135, ruber 881, ruber 885, aurantiacus 30:3, aurantiacus 44, aurantiacus 889, purpureum 63, purpureum 93, caeruleum 77, caeruleum 60, caeruleum 183, caeruleum 183:1, caeruleum 199, caeruleum 257, caeruleum 284: 1, caeruleum 823, caeruleum (367, viride 9, brunneum 19, fuscum 61) habet. melioris soap fastigium (≥3-4) in textilia polyester/nylon, hoc est, quia fabricae polyester/nylon maxime polyester-substructae sunt et cum bono colore tinguntur fastigium in fibris polyesteris fere meliores habent colorem velocitatem in textis polyester/nylon.

II) Color velocitatem frictio

Except for red 177, 40 disperse dyes had good dry/wet rubbing fastness (≥4) on polyester fabrics; 41 home-made disperse dyes had good dry/wet rubbing fastness (≥4) on polyester/nylon fabrics. On nylon, 10 dyestuffs (red FB, red 135, red 153, red 177, violet 63, violet 93, blue 183, blue 257, brown 61, brown 19) had a dry/wet rubbing fastness below grade 4, while two dyestuffs (red 30 73, red 4088) had a wet rubbing fastness of grade 4 but a dry rubbing fastness below grade 4. In comparison to the five dyestuffs (Red 86, Red 135, Red 885, Blue 183, Brown 61) that had a soaping fastness of 3 or more on nylon, all had a poorer dry/wet rubbing fastness. Although these dyes had good soap fastness on nylon, the disperse dyes were weakly bonded to the nylon fibres and the dyes were easily removed from the fabric by external forces during rubbing, which is why the disperse dyes were mostly dyed in light colours on nylon.

3) Sublimation fastness

The 41 home-made disperse dyes have good sublimation fastness on polyester fabrics and are suitable for the hot-melt fixation of disperse dyes. At high temperatures, the movement of the molecular chain segments in the amorphous zone of the polyester fibre is very violent, generating a sufficiently large number of instantaneous cavities for the disperse dyes to be dyed quickly.

The fastness to sublimation is related to the bond between the fibre molecules, the stronger the bond, the less susceptible to sublimation. It is possible that some of the disperse dyes have a weak bond with nylon, with 11 dyes (Yellow 211, Yellow H3R, Red 73, Red 177, Red 4 089, Orange 30:3, Orange 44, Violet 93, Blue 60, Blue 79, Red FB) all having a fastness to sublimation of less than 4 on nylon. The polyester/nylon fabric contains a nylon component and four dyes (yellow 211, yellow H3R, red 73, red 4088) have a fastness to sublimation of less than 4.

In summary, 41 disperse dyes had good soaping fastness, dry/wet rubbing fastness and sublimation fastness on polyester due to the weak bond between the disperse dyes and nylon fibres; comparatively, nylon fibres had poor colour fastness, while polyester/nylon fabrics with less nylon fraction also had good colour fastness, with 24 (yellow 114, yellow 163, yellow 4063, red 86, red 135, red 881, red 885, orange 30:3, orange 44, orange 889, purple 63, purple 93, blue 60, blue 77, blue 183, blue 183:1, blue 199, blue 257 135, red 881, red 885, orange 30:3, orange 44, orange 889, violet 63, violet 93, blue 60, blue 77, blue 183, blue 183:1, blue 199, blue 257, blue 284:1, blue 367, blue 823, green 9, brown 19, brown 61) have good colour fastness (soap fastness, dry/wet rub fastness and sublimation fastness) on polyester/nylon fabrics. fastness to soaping, dry/wet rubbing and sublimation are all ≥4).

In general, the colour fastness to soaping, dry/wet rubbing and sublimation of the 41 disperse dyestuffs on polyester is better than on nylon fabrics.

Table 2-4 Colour fastness of azo- and anthraquinone-based disperse dyes on three fabrics

Effect of dispersion dyes on the colour characteristic values of fabrics

The colour difference between nylon and polyester/nylon fabrics was calculated using the formula 1.43, using polyester fabric as the standard sample. The results for △Ecmc between 2.0 and 5.0 are shown in Table 2-6, and the results for △Ecmc above 5.0 are shown in Table 2-7.

Table 2-5 Comparison of colour characteristic values and colour differences of 12 dyes on 3 fabrics (polyester as a standard sample)

Ex Tabula 2-5, videre possumus: 1) Colorem differentiam: polyester ut vexillum, ΔEcmc colorum in Tabula 2-5 in polyester/nylon non altior quam 2.0. Color tinguit in fibra ad structuram tinguit, incluso caeruleo 183:1, caeruleo 18 3, caeruleo 79, purpureo 93, brunneo 19, rubeo 343 pro azo, rubro 153, flavo 211, rubro 177; rubeus 885 pro azo heterocyclicus, rubeus 86 et rubeus 92 pro anthraquinone. Color inter has differentias 12 dispergit tinguit in polyester/nylon et polyester parvus est; cum differentiam coloris inter hos 12 colores nylon comparet, ΔEcmc altior est quam 2.0. The Ecmc of three dys on nylon was above 5 for red 177 and yellow 211, pauper homochromaticum cum polyester significans. Comparando differentiam inter effusio maximam aequalitatum et K/S valores dyestufforum in tribus supra textis, λmax rubri 153, rubri 177 et flavi 211 in polyester et nylon non superiores esse quam X, significans colorem periodum. tres dyestuffos in polyester et nylon non mutaverunt, sed color lucis insigniter mutatus est.

(2) Tones: ① Polyester/nylon: Inter 12 colores in polyester/nylon cum parva differentia coloris (ΔE < 2) quinque tingui rubri 92, flavi 211, rubri 177, purpurei 93 et ​​brunnei 19, in polyester satis rubra sunt (Δa. < -1), rubra 885 et rubra 343 rubra sunt (Δa > I), rubra 92 et lutea 211 non satis lutea (Δb < -1), rubra 86, rubra 153, caerulea 79, caerulea 183:1, caerulea 183: rubra 86, rubra 153, caerulea 79, caerulea 183:1, caerulea 183 in sono parum mutata.

②Nylon: Isti 12 colores dispersos habent in sono nylon acutiorem variationem, rubra 177, rubra 885, rubra 343, rubra 153, rubra 92, purpurea 93 et ​​brunnea 19 minus rubra quam polyester (Δa. <-1), caeruleum 183, caeruleum 183: 1 cum viridi (Δa .) <-1);, yellow 211, red 153, red 177, red 343, red 92, red 885 not yellow enough, and Blue 18 3:1, Blue 183, Blue 79, Violet 93 are not yellow enough.

(3) Vividness: Except for blue 183:1, which showed little change in vividness between nylon and polyester (-1 < Δc < 1), the other 11 dyes were not as vivid as on polyester; on polyester/nylon, red 885 and red 343 were more vivid than on polyester (Δc > 1), blue 183, red 153, red 86 and blue 183:1 showed no change in vividness (-1 < Δc < 1), while red 92, purple 93, yellow 211, brown 19, blue 79 and red 177 became grey (Δc < -1). Red 92, Violet 93, Yellow 211, Brown 19, Blue 79, Red 177 become grey (Δc < -1).

Table 2-6 Comparison of colour characteristic values and colour difference of 20 dyes on 3 fabrics (polyester as standard sample)

From Table 2-6 it can be seen that

1) Colour differences: Orange 73, Red 167, Red 278, Blue 257, Red 135, Orange 889, Red 3073, Orange 30:3, Red 343:1 (4089), Red 73, Red 896, Blue 823, 12 azo types, Red 179, Yellow H3R, Red 881, Yellow 114, Blue 367, Red 887, 6 azo heterocyclic types, Blue 77, Green 9, Blue 60, Red The four anthraquinone disperse dyes, FB, have a colour difference of between 2 and 5 on polyester/nylon.

The colour differences between these 22 dyes on nylon and polyester/nylon are very different, with blue 60, red 167, green 9 on nylon being no more than 2, red 896, blue 367, red 278, red 343:1 (4089), blue 257, red 307 3, red 881, orange 30:3, red FB between 2 and 5, and red 887, red 135, blue 823, yellow H3R Red 887, Red 135, Blue 823, Yellow H3R, Orange 7 3, Red 179, Red 73, Yellow 114, Blue 77, Orange 889 are above 5.

(2) Shades: Polyester/nylon: Yellow H3R, Yellow 114, Red FB, Orange 73, Orange 889, Orange 30:3 is not red enough (Δa <-1), Green 9, Blue 367, Blue 60, Blue 823 is greenish (Δa <-1), Red 179, Red 3073, Red 135, Red 167, Red 278, Red 343:1 (4089), Red 887, Red 881, Red 73, Red 896 then reddish (Δa > 1). Red 343:1, Red 3073, Red 896, Red 881 are not yellow enough (Δb < -1) and Blue 367, Blue 823, Blue 257, Green 9 are bluish (Δb < -1).

(3) Brightness: On polyester/nylon, all 19 dyes were brighter than on polyester (Δc greater than 0), except for yellow H3R, orange 73 and orange 889, which became grey on polyester/nylon. On nylon, all 22 dyes were less vibrant than on polyester.

Table 2-7 Comparison of colour characteristic values and colour differences of 7 dyestuffs on 3 fabrics (polyester as standard sample)

(1) Color differentia: Polyester utens ut vexillum, sex azo dispergat colores (flavus 163, purpureus 63, caeruleus 199, flavus 4063, aurantiacus 44, fuscus 61) et unus azo heterocyclico tingutionem spargens (hyacinthinum 284:1) colorem habuit. differentia altior quam in polyester V / nylon. Ceterae sex dyestuffus, caeruleus 28 4:1, purpureus 63, caeruleus 199, flavus 4063, aurantiacus 44 et fuscus 61, omnes supra 9, significans hos sex dyestuffos male esse homochromaticos cum polyester in nylon et polyester/nylon, idque color tempus in his dyestuffs non significantly mutare (Δλmax < 10) in omnibus tribus fibris.

(2) Tones: The toni polyester/nylon and nylon constant, with blue 199 being greenish (Δa < 0) Nec satis caeruleum (Δb* > 0), yellow 163 and yellow 4063 not red enough (Δa < 0) and yellowish (Δb > 0), and brown 61 and orange 44 being redish (Δa > 0).

(3) Vividness: on polyester/nylon, yellow 4063 is not as bright as on polyester (Δc < 0), while purple 63, blue 284:1, blue 199, orange 44, brown 61 and yellow 163 are brighter (Δc > 0); on nylon, yellow 163 is brighter than on polyester (Δc > 0), blue 284:1, blue 199, orange 44, brown 61 and purple 63 are not as bright as on polyester (Δc < 0), while yellow 4063 is not as bright as on polyester (Δc < 0). c < 0) and yellow 4063 did not vary significantly in vibrancy.

Summary of screening results for liquid disperse dyes

A comparative analysis of the printing performance and homogeneity of 41 disperse dyestuffs on polyester, nylon and polyester/nylon fabrics is presented above.

The 23 disperse dyes (orange 30:3, orange 44, orange 73, red 167, red 177, red 3073, red 4088, red 4089, red 73, red 86, red 885, red 92, red FB, yellow 163, yellow 211, yellow 4063, blue 183, blue 183:1, blue 60, green 9, violet 63, violet 93, brown 19) have the greatest absorption wavelength variation on polyester and nylon fabrics. The absorption wavelengths do not vary much and the apparent colour yield is similar, so that printing on polyester/nylon fabrics avoids the problem of pinching or uneven colour yield.

24 disperse dyes (blue 367, red 885, blue 257, red 881, orange 30:3, orange 889, brown 19, brown 61, blue 823, blue 284:1, blue 199, red 135, violet 93, violet 63, blue 77, orange 44, yellow 114, yellow 40 63, red 86, blue 183, yellow 163, blue 60, blue 183:1, green 9) on polyester/nylon fabrics. (9) on polyester/nylon fabrics with good soap fastness, dry/wet rubbing fastness and sublimation fastness, all ≥ 4.

The 41 disperse dyestuffs were screened and 13 dyestuffs (orange 30:3, orange 44, red 86, red 885, yellow 163, yellow 4063, blue 183, blue 183:1, blue 60, green 9, purple 63, purple 93, brown 19) were found to be more suitable for printing on polyester/nylon fabrics.

Effect of post-printing treatment on fabric printing properties

In the above section, 41 disperse dyes were compared in terms of apparent colour yield and colour fastness on 3 fabrics (polyester, nylon and polyester/nylon) and 13 dyes were selected as more suitable for printing on polyester/nylon. This section aims to compare the effect of different post-treatment methods on the printing performance of these 13 disperse dyestuffs after printing on the three fabrics. It is hoped that the disperse dyestuffs from can be selected for their high colour fastness and depth of colour gain after printing on polyester/nylon fabrics without soaping or reduction washing, but simply by washing in hot water, thus reducing the printing process and water pollution and achieving energy saving.

The printing performance of 13 liquid disperse dyes (orange 30:3, orange 44, red 86, red 885, yellow 163, yellow 4063, blue 183, blue 183:1, blue 60, green 9, purple 63, purple 93, brown 19) was examined to compare the effect of different post-printing treatments on the printing performance of the three printed fabrics, the results of which are shown in Tables 2-8.

Table 2-8 Effect of post-treatment on fabric printing properties

From Table 2-8 it can be seen that

(1) K/S value: compare the two post-treatment (hot water washing, soap washing) K/S value change, if the K/S value change is small (hot water washing K/S value and soap washing K/S value difference <1.0), it means that the fabric only needs hot water washing, without soap washing or reduction cleaning can wash away the surface floating colour. If the K/S value changes significantly (difference between the K/S value of the hot water wash and the K/S value of the soap wash ≥ 1. 0), it means that the fabric cannot be completely removed from the floating colours by washing in water and needs to be soaped or reverted to wash to completely remove the floating colours.

① Polyester: 2 dyestuffs (yellow 4063 and blue 60) with large variations in K/S values, and 11 disperse dyestuffs requiring only a simple wash.

②Nylon: 3 dyestuffs with large variations in K/S values (violet 93, orange 44, violet 63) and 10 disperse dyestuffs requiring only simple washing.

The other 9 disperse dyes required only a simple wash.

2)Colour fastness.

1 Only the disperse dyestuff (Red 885) has a poor colour fastness on polyester/nylon fabrics, with a dry fastness of only 3 and a wet fastness of 3-4 after hot washing; a wet fastness of 4-5 after soaping; Soaping is therefore required to improve the colour fastness of polyester/nylon fabrics.

The other 12 disperse dyes, washed with hot water or soap, all had a wet rubbing fastness of 4 or more, which was higher than the wet rubbing fastness without washing (by about 1 level), and these 12 disperse dyes were able to achieve a better rubbing fastness without soaping by washing with hot water only.

In summary, of the 13 disperse dyes suitable for printing on polyester/nylon fabrics, four dyes (red 885, orange 30:3, orange 44, violet 93) require soaping after printing to remove the surface colour and improve colour fastness. The other 9 dyes (red 86, yellow 163, yellow 4063, blue 183, blue 183:1, blue 60, green 9, purple 63, brown 19) are suitable for washing with hot water only, eliminating the need for soaping and achieving excellent print performance.

Relationship between the molecular forces of disperse dyes and printing performance

Differentiae typographicae in executione tinguiorum in diversis fibris valde se habent ad structuram hypotheticam tincturarum et modum quo tinguit vinculum ad fibrarum. Plerique tingui dispersorum colorum apparentium in polyester cedunt altiorem habent, sicut polyester et nylon tinguntur ex vinculo hydrogenii et viribus van der Waals, et sunt nonnullae differentiae in commercio inter colores disjectos et fibras ob varias structuras. polyester et nylon. Polyester structuram strictam relative habet, cum eminentia orientationis catenarum macromolecularium et hiatus parvae hypotheticae, et affinitatem habet praestantem pro simplici et demissione pondus hypotheticum colores dispersos, facilem efficiens umbras obscuriores et celeritas coloris altioris. Quamvis nylon fibra hydrophobica sicut polyestera est, magnum numerum sodalitatum hydrophilicorum (-CONH-) in suis macromoleculis et amino et carboxyis hydrophilicis finibus moleculis continet.

In order to understand the differences in printing performance on polyester and polyester/nylon due to differences in dye structure, the Gausian software was used to calculate the forces between some of the dye molecules at the lowest energy.

Table 2-9 Structural formulae of the four azo-benzene disperse dyes

Table 2-10 Forces of azo benzene dye molecules

Table 2-11 Forces between azo heterocycles and anthraquinone-based dye molecules

(1) Azo benzene disperse dyes: Compared to orange 44, yellow 163 has a symmetrical structure, so the dye molecules stretch and bend more easily and have a higher intermolecular attraction; however, because of its symmetrical structure, its stretch-bend energy is repulsive and does not twist easily; this results in a higher potential resistance energy due to the conformation of the dye, which is repulsive; the vanishing force is governed by the total potential resistance energy. The intermolecular forces of the symmetrical structure of yellow 163 also change, resulting in an increase in the repulsive force of the non-polar vanishing force, a decrease in the attractive force of the polar vanishing force and a lower interaction force between the dye molecules. The lower colour depth of yellow 163 on polyester/nylon fabrics may therefore be related to the higher repulsion of the total potential energy. Compared to yellow 163, violet 63 and blue 183 are also asymmetric structures, with violet 63 introducing -Cl in the diazo component and blue 183 introducing -Br in the diazo component. The site-resistance energies due to the dye conformation of these two dyes are similar and therefore the printing properties on polyester and polyester/nylon are similar, i.e. the two dyes also have a strong interaction with nylon.

When comparing the three heterocyclic azo dyes, Green 9 has a higher conformationally induced site resistance (absorption), while Blue 284:1 has a higher conformationally induced site resistance (repulsion). The introduction of the strong polar pyridone enhances the intermolecular interaction (absorption) of yellow 163, which is stronger than the benzothiazole structure of blue 284:1; the introduction of dinitrothiophene in green 9 with the diazo component probably enhances the electron cloud density of the sulphur atoms and the intermolecular interaction is repulsive, but the overall site resistance (absorption) is still high. The interaction with the nylon fibre is thus enhanced.

Anthraquinone dyes have properties similar to those of azo benzene and heterocyclic azo. When the potential resistance of attraction due to the conformation of the dye is high, or when the intermolecular forces of attraction governed by the total potential resistance are high, the dye binds easily to the nylon fibre and has a deeper colour depth, resulting in an increased K/S value.

Of course, the interaction between the different structures of disperse dyes and polyester and nylon is complex. In addition, the aromatic ring in the dye affects the dipole-dipole forces, which are more favourable to polyester and improve colour fastness than to nylon.

Summary of this chapter

1. Ad investigandum impressionem 41 liquidi homemade diffluentis dyestufforum dispergendi et comparare mutationes in valores K/S et maximam absorptionem aequalitatum trium textuum impressorum (polyester, nylon et polyester/nylon) post bimensos, eventus ostendit.

The following disperse dyes are available for polyester and nylon: 15 monoazo dyes (yellow 163, red 73, red 135, red 167, red 278, red 4088, red 4089, orange 30:3, orange 44, orange 73, violet 63, violet 93, blue 183, blue 183:1, brown 19), 8 heterocyclic azo dyes (yellow 114, yellow 21 1, yellow 4063, red 177, yellow H3R, red 885, red 3073, green 9) and 4 anthraquinone dyes (red FB, red 92, red 86, blue 60). 21 1, yellow 4063, red 177, yellow H3R, red 885, red 3073, green 9) and four anthraquinone dyes (red FB, red 92, red 86, blue 60).

The disperse dyes with a K/S value of not less than 10.0 for polyester and nylon are: 12 monoazo dyes (red 73, red 153, red 167, red 278, red 887, red 4088, red 4089, red 8960, purple 63, purple 93, blue 199, blue 257) and 4 heterocyclic azo dyes (yellow 114, red 179, red 885, red 3073).

(iii) Disperse dyes with a K/S value of not less than 10.0 for polyester/nylon: 11 monoazo dyes (red 73, red 153, red 179, red 887, red 4088, red 4089, violet 63, violet 93, blue 257, blue 823, brown 61) and 3 heterocyclic azo dyes (yellow 114, yellow 211, red 177).

2. To examine the printing performance of 41 homemade liquid disperse dyestuffs and to compare the colour fastness (soap fastness, dry/wet rubbing fastness and sublimation fastness) of three printed fabrics (polyester, nylon and polyester/nylon) after soaping, the results showed that

Forty-one disperse dyes have good colour fastness to soaping, dry/wet rubbing and sublimation on polyester; nylon fibres have relatively poor colour fastness, while polyester/nylon fabrics with a low nylon content also have good colour fastness. Twenty-four dyes (yellow 114, yellow 163, yellow 4063, red 86, red 135, red 881, red 885, orange 30:3, orange 44, orange 889, purple 63, purple 93, blue 60, blue 77, blue 183, blue 183:1, blue 199, blue 257, blue 284:1, blue 367, blue 823, green 9, brown 19, brown 61) have good colour fastness on polyester/nylon fabrics. Good colour fastness (soap fastness, dry/wet rubbing fastness and sublimation fastness all ≥4).

Eventus ostendit quod plures colores in polyester et nylon sparsae colores mutati sunt, cum maiore colore differentiae, et in polyester magis vibrabant. Duodecim dyestufforum dispersorum minus differentiam colorum ostendit in polyester/nylon quam in polyester: caeruleo 183:1, caeruleo 183, caeruleo 79, violaceo 93, brunneo 19 et rubro 343 ad azo globus, rubra 153, flava 211, rubra 177; et rubeus 885 pro azo globus et rubeus 86 et rubeus 92 pro anthraquinone globus.

4. Thirteen of the 41 disperse dyes (orange 30:3, orange 44, red 86, red 885, yellow 163, yellow 4,063, blue 183, blue 183:1, blue 60, green 9, violet 63, violet 93, brown 19) were selected as being more suitable for printing on polyester/nylon fabrics.

5. Comparison of 13 dyestuffs suitable for printing on polyester/nylon fabrics and the effect of different post-treatment methods (hot water washing, soaping) on the printing performance of the fabrics. The results show that four dyestuffs (red 885, orange 30:3, orange 44, purple 9 3) need to be soaped after printing to remove the surface colour and improve the colour fastness of the fabric. The other 9 dyestuffs (red 8 6, yellow 163, yellow 4063, blue 183, blue 183:1, blue 60, green 9, purple 63, brown 19), only require hot water washing after printing to give the fabric good colour fastness, thus eliminating the need for soap washing and achieving energy saving and emission reduction.

6. In order to understand the differences in printing performance on polyester and polyester/nylon due to differences in dye structure, the forces between some dye molecules at the lowest energy were calculated and the results showed that

The interaction between disperse dyes of different structures and polyester and nylon is complex, with nylon fibres relying mainly on dipole and hydrogen bonding to the dye, while polyester relies more on dispersion forces to bind the dye molecules. When the repulsive or absorptive forces of the disperse dyestuff increase, the dyestuff binds to the nylon fibre and the colour fastness is improved.

Optimisation of the printing process for polyester/nylon decorative fabrics

Introductio

A study of the performance of liquid disperse dyes on polyester/nylon fabrics was carried out. 14 disperse dyes were selected from 41 disperse dyes for printing on polyester/nylon fabrics and the preliminary results showed that the “Micro printing” process is feasible for printing on polyester/nylon fabrics.

At present, polyester/nylon (PET/PA) decorative fabrics are mostly made of microfibres or two-component composite microfibres, which have a small linear density and a large specific surface area, resulting in a soft feel, soft lustre and good drapability, air permeability and flexibility [103- 104]. Polyester/nylon decorative fabrics are interwoven with polyester/nylon composite fibres, the weft yarn is ordinary polyester fibre and the warp yarn is polyester/nylon composite microfibre, the process of stripping the original fibre into microfibre is actually the process of opening the fibre[105]. Only with complete opening of the fibre can the excellent properties of the microfibre be realised[106] , so a suitable pre-treatment process is particularly important for the subsequent printing and finishing of polyester/nylon fabrics.

Typographia medium for “microprinting” maximeque liquidae discutiunt colores, crassiores et dolatos. Crassores synthetici aptiores sunt pro 'micro-expressione'’ processus prae aliis crassioribus naturalibus (sodium alginatum, guar gummi, etc.) ob altitudinem rate formatam, simplicitatem productionis, salutis repositionis et exemplaris claritatem. Crassores synthetici praesto sunt in formis tam anionicis quam non-ionicis. Anionicae crassiores syntheticae viscositatem altiorem habent quam crassiores synthetica non-ionica, sed electrolytis minus repugnant et nunc maxime polymerorum acrylico vel acrylato[107] sunt.

The use of functional binders in dyeing or printing is an effective way to improve dye utilisation and reduce waste water emissions. For example, the group prepared the acrylate binder HD650 using microemulsion semi-continuous emulsion polymerisation, which has a higher apparent colour depth, soaping fastness and rubbing fastness than commercially available binders, and a softer feel to the printed fabric [78]. A suitable binder not only improves the utilisation of acid dyes in nylon printing, but also improves the fastness to alkaline perspiration and reduces the white staining of nylon by acid dyes [81]; it also improves the uniformity of hot-melt dyeing of polyester with disperse dyes, reduces the floating of dyes on the fibre surface and reduces the burden of reductive cleaning and washing afterwards, making it a low water consumption dyeing process [80].

Ligones in pingendis typographicis late usi sunt et multa commoda habent sicut processus simplex, industria salutaris, nulla aquae missio et liquida Venustates; sunt autem incommoda ut difficile sentiunt, decolores velocitas ad frictionem, aer tenuis permeabilitas et defectus colorum vividiorum.

Patet ex capite 2 quod pauciores sunt colores polyester/nylon idoneos urinae dispergunt, pauciores etiam colores nigro colore dispergunt. Utilis esset additione ad "micro imprimendi"’ processus si polyester/nylon textilia imprimantur cum fucis et fucis in eodem crustulo ad inquirendum effectum de proprietatibus typographicis fabricae.

Based on the above ideas, the main research in this chapter includes: 1) Polyester/nylon fabric unfilming: to unfilm the fabric and improve the fabric properties; 2) Polyester/nylon fabric printing process optimisation: to explore the influence of printing media (thickener, binder) on the printing performance and to obtain the best process for polyester/nylon fabric printing; 3) Disperse dye/paint co-paste printing: to explore the printing performance of disperse dye/paint co-paste printing. 3) Disperse dye/coat printing: To investigate the performance of disperse dye/coat printing.

Materiae experimentalis et apparatus

3.2.1 Fabrics and dyes

Fabric.

Polyester/nylon fabric, 87% polyester, 13% nylon, FDY 73.33 dtex x 177.78 dtex polyester/nylon composite, 100g/m2. Ltd.

Liquid dyes: same as 2.2.1

Paints: Paint Yellow 201, Paint Red 202, Paint Blue 203, commercially available.

3.2.2 Experimental apparatus

Same as 2.2.2.

Equipment nameModelManufacturers
Oscillating water bathsHZD-CBeijing HengAoDe Instrument Co.
Gross Effect TesterQSM-215Beijing HengAoDe Instrument Co.
KES Fabric Style TesterFB-AUTO-AKES Corporation, Japan
Fracture Strength TesterINSTRON-3365Inster Corporation, USA
Scanning Electron MicroscopeS-4800Hitachi, Japan

3.2.3 Reagents

Experimental methods and test methods

3.3.1 Pre-treatment processes

Fabric (PET/PA) → open fibre (NaOH x g/L, penetrant JFC 1g/L, bath ratio 1:30, heating to 1 10°C, heating rate 1°C/min, holding time 30min) → cold water washing → pickling (1g/L acetic acid solution) → cold water washing to neutral → drying (70°C)

3.3.2 Printing process

Process flow: fabric → printing → drying (75℃ × 2min) → high temperature roasting → (soaping) → washing (80℃ × 15min) → drying → finished product.

Soaping processus: synthetica purgat 4g/L, ratio balinei 1:50, 50°C x 45 min.

Printing medium: synthetic thickener PTF-S 3.0%, binder T9 x%, liquid disperse dyes y%, paint z%, the rest water.

3.3.3 Fibre weight loss rate

The fabric is pretreated and the rate of change of fibre mass is calculated.

where: M1 is the mass of the unpre-treated fabric.

M2 is the mass mass of the fabric after the pre-treatment

MG is fibre weight loss (%)

3.3.4 Strength and elongation

The test was carried out on the INSTRON-3365 fabric breaking strength tester according toGB/T 3923.2-1997 Tensile properties of textile fabrics Part I: Determination of breaking strength and elongation at break Strip methodand the average value was taken after five tests.

3.3.5 Fabric styles

The bending hysteresis moment 2HB of the fabric is tested on the KES-FB Style Tester FB-2, together with the bending stiffness B. Bending stiffness B: indicates the stiffness and flexibility of the fabric; the smaller the B value, the softer the fabric feels.

The smaller the 2HB value, the better the fabric’s ability to recover after bending deformation.

3.3.6 Gross effect

Capillary effect: Test on the QSM-215 Capillary Effect Tester in accordance with FZ/T 01071-2008 Textiles Capillary Effect Test Method, recording the height of liquid core suction (cm) for different test times.

3.3.7 Colour fastness, K/S values, colour characteristic values and relative fixation rates

Same as 2.3.2, 2.3.3, 2.3.4.

3.3.8 SEM scanning electron microscopy

The fabric was tested and analysed using a scanning electron microscope S-4800 to observe the surface morphology of the fabric fibres.

Effect of NaOH on the properties of polyester/nylon fabrics

The effect of NaOH concentration, treatment temperature and time on the opening effect, fabric wool effect, hand feel, fabric bending stiffness, strength and elongation, and oligomerisation was investigated to optimise the optimum pretreatment process.

3.4.1 Effect of alkali concentration on the surface morphology of polyester/nylon fabrics

The effect of NaOH concentration on the surface morphology of the polyester/nylon fabric (SEM diagram) is shown in Figure 3-1. From Figure 3-1 it can be seen that

(1) Surface morphology of the fibres: When the NaOH is 0g/L, most of the fibres fail to open and there are more oligomers on the surface of the fibres. This not only affects the feel of the fabric, but also affects the adsorption of dyestuff into the fabric.

(2) The effect of NaOH: As the concentration of NaOH increases, the opening effect increases, the fibre bundles gradually open up and the oligomers on the fibre surface gradually become less and even disappear (Figure 3-1(e)). When NaOH is selected, polyester/nylon fibres are subject to alkali hydrolysis due to the strong alkali, which leads to the hydrolysis of the oligomers and their easy removal from the fibre surface, and to the hydrolysis of the amide backbone of the nylon macromolecule. Therefore, it is extremely important to control the concentration of alkali, as insufficient fibre weight loss can affect the feel, the opening effect of PET/PA composite fibres and the mechanical properties of the fabric.

   (a) NaOH 0g/L (b) NaOH 4g/L b)NaOH 4g/L

(c) NaOH 8g/L (d) NaOH 12g/L d)NaOH 12g/L

  (e) NaOH 16g/L

Figura 3-1 Effectus alcali retrahitur in superficie Insecta polyester/nylon textilia

3.4.2 Effectus alcali retrahitur in humorem effusio polyester/nylon textilia

The effect of NaOH concentration on the moisture absorption of the polyester/nylon fabric is shown in Figure 3-2, and the higher the NaOH concentration, the greater the moisture absorption. R2) reached 0.99, the one-dimensional non-linear equation was feasible. As the concentration of NaOH increases, the gross efficiency value increases and the rate of moisture absorption increases. This is due to the fact that NaOH accelerates the opening of the polyester/nylon fabric and increases the specific surface area of the fibre, while the hydrolysis of the polyester fibre surface by alkali is also beneficial to the increase in the rate of moisture absorption and the gross efficiency of the fibre.

Attamen quo altior crassior efficacia, eo melior processus imprimendi et tingendi erit, exempli gratia, si superficies fabricae suffusa est et color non uniformis [109] est. Ideo omnia alia ratio habenda est antequam de processu aperiente opportuno decernatur.

Figura 3-2 Effectus NaOH retrahitur in humorem effusio polyester/nylon textilia

Mensa 3-1 Analysis regressus unus dimensivus non-linearibus (humorus effusio curvae)

NaOH concentration/g.L-1Mathematica exemplaCorrelation/R2Crassa effectus / cm
0y = 2.9739ln(x) + 0.0230.996110.4
4y = 3.3689ln(x) – 0.10830.990812.0
8y = 3.6007ln(x) + 0.01750.993812.7
12y = 3.7311ln(x) + 0.56560.997713.5
16y = 4.045ln(x) + 0.46170.992614.7

3.4.3 Effectus alcali concentration in pondus damnum polyester / nylon textilia

The effect of alkali concentration on the weight loss of polyester/nylon fabrics is shown in Figure 3-3, which shows that the weight loss of fibres increases linearly with increasing NaOH concentration, with the relationship between weight loss (y/%) and NaOH concentration (x/g.L-1) being y = 0.5969x with an R² of 0.9942.

The weight loss of polyester/nylon fibres was linearly related to the NaOH concentration because NaOH hydrolyses the ester bonds of polyester fibres in a regular manner, and can be hydrolysed to sodium benzodicarbonate and ethylene glycol in NaOH solutions[110] , and as N aOH increases, the concentration of hydroxyl groups increases, the amount of hydroxyl groups adsorbed to the fibre surface increases, the hydrolysis of polyester increases, and the weight loss of the fibre increases[111] . The hydrolysis of polyester increases as the concentration of hydroxyl groups on the surface of the fibre increases and the weight loss of the fibre increases[111] .

In production practice, the weight loss of the fabric should be controlled at 7-10%, where the NaOH dosage is 11.7g/L-16.7g/L.

Figure 3-3 Effect of NaOH concentration on weight loss of polyester/nylon fabrics

3.4.4 Effect of alkali concentration on strength and elongation of polyester/nylon fabrics

The effect of NaOH concentration on the breaking strength and elongation at break of polyester/nylon fabrics is shown in Figures 3-4, from which it can be seen that

1) Breaking strength.

The breaking strength of polyester/nylon fabrics in the warp and weft direction decreases with increasing NaOH concentration. This is due to the hydrolysis of polyester fibres, which gradually opens up the fibre bundles and makes the fibres thinner, resulting in a decrease in strength.

The fracture strength (y/N) was modelled as a linear regression with NaOH concentration (x/g.L-1 ).

Longitudinal direction: y = -0.0813x + 14.538 , R2² = 0.9873

Latitude: y = -0.2755x + 24.080 , R1² = 0.9673

As the original breaking strength is higher in the weft direction than in the warp direction, a comparison of the linear regression equations shows that the rate of decrease in breaking strength is higher in the weft direction than in the warp direction as the NaOH concentration increases, which may be related to the composition and density of the warp and weft fibres.

2) Elongation at break.

The elongation at break of polyester/nylon fabrics in the warp and weft directions decreases with increasing NaOH concentration.

Elongation at break (y/%) was modelled as a linear regression with NaOH concentration (x/g.L-1 ).

Longitude: y = -0.0813x + 14.538 , R4² = 0.9873

Latitude: y = -0.2755x + 24.08 , R3² = 0.9673

Since the original elongation at break is higher in the latitudinal direction than in the meridional direction, a comparison of the linear regression equations shows that the rate of decrease in elongation at break is higher in the latitudinal direction than in the meridional direction as the concentration of NaOH increases.

Figure 3-4 Effect of NaOH concentration on the mechanical properties of polyester/nylon fabrics

3.4.5 Control of the amount of oligomer on polyester/nylon fabrics

Polyester fibres always contain small amounts of oligomers, which generally have little effect on the performance of the fibre, but when polyester/nylon is printed with disperse dyestuffs and then baked at high temperatures, the oligomers can migrate out of the fibre and have an effect on the print. When polyester/nylon fabrics are opened, the specific surface area becomes larger and the problem of oligomers is much more serious than with conventional fibres, so the effect of oligomers on the surface of the fibres needs to be considered.

Three polyester/nylon fibres (0 g/L, 4 g/L and 16 g/L NaOH) were treated with NaOH in the pre-treatment, resulting in the hydrolysis of the oligomers and their easy removal from the fibre surface as shown in Figures 3-6.

As can be seen from Figures 3-6, when the NaOH dosage is 0g/L, the fibres are obviously incompletely opened and there are more oligomers on the surface of the fibres; when the fibres are treated with 4g/L NaOH, the fibre bundles are completely opened, but there are more oligomers due to the increase in the specific surface area of the fibres; when the fibres are treated with 12g/L NaOH, the surface of the fibres is smoother.

The oligomer hydrolysis is more complete and the oligomers have been largely removed from the fibre surface.

Figure 3-6 Effect of NaOH treatment on oligomers on the fabric surface (SEM image)

In summary, taking into account the effect of open fibre and oligomer removal, the pre-treatment process for polyester/nylon fabrics is.

Fabric preparation → fibre opening (NaOH 12g/L, penetrant JFC 1g/L, bath ratio 1:30, heating to 110°C, heating rate 1°C/min, holding time 30min) → cold water washing → pickling (1g/L acetic acid solution) → cold water washing to neutral → drying (70°C). At this point the weight loss of the polyester/nylon fabric was 7.16%, the strength loss in the warp direction was 6.7%, the strength loss in the weft direction was 10.7%, the gross efficiency was 14.7cm, the feel was soft and the oligomers on the fibres were basically removed.

Optimisation of disperse dye printing processes on polyester/nylon fabrics

3.5.1 The effect of dye concentration on printing performance

The effect of the concentration of two liquid disperse dyes (yellow 163, blue 79) on the printing performance of polyester/nylon fabrics was investigated with a fixed binder FC650 1%, a thickener PTF-S 3%, a baking temperature of 170°C and a baking time of 60s. The effect of soaping on the K/S value, RF value and colour fastness of the printed fabrics was compared and the results are shown in Table 3-2.

Table 3-2 Effect of dye concentration on colour fastness, K/S value and RF of polyester/nylon prints

As can be seen from Table 3-2.

1) Dyestuff printability: The K/S value of Disperse Yellow 163 increased from 2.25 to 13.22 and that of Disperse Blue 79 increased from 4.11 to 14.06 when the dye concentration was increased from 0.5% to 3.0%; this indicates that these two liquid disperse dyestuffs have good printability and can produce dark prints on polyester/nylon fabrics.

(2) Effect of soaping (RF value): when the dye concentration increased from 0.5% to 3.0%, the RF value of Disperse Yellow 163 increased from 0.77 to 0.86 and the RF value of Disperse Blue 179 increased from 0.76 to 0.91, indicating that the increase in the amount of dye contributed to the increase in RF value.

(3) Colour fastness: ① Unsoaped samples: When the concentration of Disperse Yellow 163 is 0.5-2.5%, the colour fastness to rubbing in the dry state is not less than 4, and in the wet state is not less than 3-4. At a disperse blue 79 dye concentration of 0.5-2.5%, the dry and wet fastness to rubbing is not less than 4, with the dry fastness to rubbing being slightly higher.

(2) Soaping samples: the colour fastness (dry and wet) of the two liquid disperse dyes (yellow 163 and blue 79) was improved (approx. 0.5-1 level) by soaping, which indicates that soaping is beneficial for the improvement of the colour fastness of the fabrics to dry and wet rubbing.

(iii) Colour fastness to soaping: as the amount of the two liquid disperse dyes (yellow 163 and blue 79) increased, the colour fastness to soaping decreased from level 5 to level 3. This indicates that although the amount of colour obtained increases as the concentration of the dyestuff increases, soaping removes the floating dyestuff from the surface, which is not firmly bound to the fibres, and removes the additives from the printing paste, which affects the degree of colour change and leads to a deterioration in the colour fastness of soaping.

Therefore, it is a contradictory issue to reduce the burden of post-treatment of polyester/nylon printing (e.g. eliminating the need for reduction washing or soaping) and to have good printing performance (e.g. high colour depth, colour fastness to rubbing and soaping of not less than 4 levels). If the amount of two liquid disperse dyes (yellow 163 and blue 79) does not exceed 2%, the burden of post-treatment is reduced, but the depth of colour obtained is slightly lower.

3.5.2 Effect of thickeners on printing performance

One of the features of the “Micro printing” technique is the use of synthetic thickeners with high viscosity and high paste formation rates to replace the traditional natural pastes.

Five thickeners (PTF-S, PTF-3, H955, H985 and S3713) were selected to investigate the effect of thickener dosage on the printing properties (colour characteristics, K/S value, RF value, clarity) of liquid dispersion yellow 163 at a fixed dosage of 2%, binder FC650 1%, baking temperature 170°C and baking time 60 s. The results are shown in Table 3-3. The effect of soaping on the colour fastness of the printed fabric to rubbing was compared and the colour fastness to soaping was tested, and the feel of the printed fabric was subjectively evaluated.

From Tables 3-3 and 3-4 it can be seen that

(1) Printing clarity and hand feel: The printing clarity of polyester/nylon fabrics is related to the amount of thickener. When the amount of five thickeners (PTF-S, PTF-3, H955, H985 and S3713) is not higher than 1.5%, they all show different degrees of bleeding. As the amount of thickener increases, the four thickeners become harder in feel, except for PTF-S which still has an excellent feel, and PTF-3 which is harder in feel regardless of the amount.

(2) The effect of soaping and the K/S and RF values: at the same dye dosage, PTF-3 has the darkest colour, followed by H985, S3713 and PTF-S, while H955 has the lightest colour; comparing the K/S values before and after soaping, soaping has a small effect on the K/S value of PTF-3 (RF value of 0.96-0.97) and the largest effect on the K/S value of H955 (RF value of 0.84-0.86). In addition, the amount of thickener directly affected the K/S and RF values, e.g. PTF-S had a low RF value (0.84-0.88) at low dosages (1.5-2.0%) and a high RF value (0.92) at high dosages (2.5-3.0%), while S3713 had the opposite variation, e.g. a low dosage (1.0-1.5%). S3713 showed the opposite variation, with higher RF values (0.92-0.96) at lower dosages (1.0-1.5%) and lower RF values (0.84) at higher dosages (2.0%). Although the five thickeners (PTF-S, PTF-3, H955, H985 and S3713) belong to the same polyacrylate group, differences in their content and molecular weight, as well as in the properties of the surfactants added to improve rheology, can directly affect the printing performance of polyester/nylon fabrics and the choice of post-treatment process for printed fabrics. For example, PTF-3 has a higher RF value and a darker colour before and after soaping, indicating less floating colours.

(3) Colour characteristic values and maximum absorption wavelength: Δa and Δb of the five thickeners were less than 2 before and after soaping, and the maximum absorption wavelength (420 nm) of the fabrics corresponding to the five thickeners did not change, indicating that the use of these five thickeners had no effect on the colour phase of the fabrics.

(4) Colour fastness: ① Colour fastness to soaping: PTF-S and H955 thickeners do not change the colour fastness to soaping with increasing dosage and are not lower than 4 levels, while the colour fastness to soaping of three thickeners (PTF-3, H985, S3713) is not lower than 3-4 levels. ② Colour fastness to rubbing: the three thickeners (PTF-S, H955, S3713) do not change the colour fastness to rubbing in wet or dry, whether soaping or before soaping, and the colour fastness to rubbing in wet or dry does not change much with the change in concentration.

In summary, the thickener PTF-S is suitable for use as a thickening agent in the “Micro printing” process for polyester and brocade fabrics. It is clearer after printing, has no effect on the feel of the fabric, has less floating colours and has a higher colour yield, and has a colour fastness to soaping and rubbing of not less than 4 levels.

Table 3-3 Effect of thickener concentration on the printing performance of polyester/nylon fabrics (yellow 163)

Table 3-4 Effect of thickener concentration on colour fastness of polyester/nylon printing (yellow 163)

3.5.3 Influence of binders on print performance

The group has previously explored the use of a home-made binder for polyester printing and has synthesised a binder that gives a deep colour, low variation in K/S value, a colour fastness of 5 without soaping and a soft feel after direct printing [78]. This sub-section examines the application of the binder FC650 for printing on polyester and nylon fabrics. The effect of the binder FC650 on the printing performance was investigated by fixing the liquid dispersion yellow 163 at 2%, the thickener PTF-S at 3%, the baking temperature at 170°C and the baking time at 60 s. The results are shown in Table 3-5.

As can be seen from Table 3-5.

(1) K/S, RF: Quantum ligans FC650 auctus est, valores K/S in sophismata et fabricas polyester/nylon auctae sunt et RF valores aucti sunt. Hoc indicat ligans FC650 solidamentum dyestuffi meliorem meliorem esse et valorem RF minus variare (0.94-0.95) cum ligans FC650 1.0-2.0% est, quod indicat colorem apparentem fabricae cedere stabilem.

(2) Colour fastness and hand feel: With the increase in the amount of binder FC650, the colour fastness to soaping can be significantly improved, e.g. without binder the colour fastness to soaping is only 3; with 1.0-2.0% binder FC650, the colour fastness to soaping reaches 4 and above. Binder FC650 also improves the colour fastness of unsoaped fabrics to rubbing in the dry state (approx. 0.5-1 level) and in the wet state (approx. 0.5 level). Soap-washed polyester/nylon fabrics with a binder FC650 of 1.0-2.0% improve the dry rubbing fastness by 0.5. This is due to the fact that the increased amount of binder in the printing paste increases the amount of solids remaining on the fabric surface after printing, which tends to form a film-like structure on the fibre surface and improves the colour fastness, but causes the fabric to feel stiffer (e.g. 1.5-2.0% for FC650).

As a result, the optimum amount of binder FC650 is 1%, which provides good printability and a soft fabric feel.

Table 3-5 Effect of binder concentration on colour fastness and hand feel of polyester/nylon fabrics

3.5.4 Effect of baking time and baking temperature on printing performance

The effect of different baking times (30s-90s) and temperatures (170°C-200°C) on the colour yield and colour fastness of the fabrics was investigated.

(1) K/S and RF values: As the roasting time increases, the K/S values of unsoaped fabrics change less (4.73 < K/S < 5.89) and the K/S values of soaped fabrics also change less, but this affects the fixation rate of dyestuff and fibres and reduces the floating colours on the surface of the fabric; when the roasting time is 70s, the RF value is the largest (up to 0.98); if the roasting time continues to be increased or shortened, the RF value becomes smaller, i.e. more of the floating colours of dyestuff attached to the surface of the fibres are removed when soaping (including auxiliaries such as thickeners). The RF value decreases with higher or shorter baking times, i.e. more of the dye float is removed from the fibre surface during soaping (including auxiliaries such as thickeners).

(2) Colour fastness to soaping and handfeel: the fabric has a softer handfeel when baked for less than 70 seconds, but the fabric feels harder when baked for more than 80 seconds, probably because nylon is not resistant to high temperatures and has a lower glass transition temperature.) This also affects the fixation of the disperse dyestuff on the nylon, resulting in poor colour fastness (<4).

(3) Colour fastness to rubbing: short baking time (<50 seconds), soaping improves the colour fastness to rubbing (0.5 level).

However, with longer baking times (>50 seconds), the fabric has excellent rubbing fastness with or without soaping (class 4 and above).

Table 3-6 Effect of baking temperature on colour yield and colour fastness of fabrics

(1) K/S and RF values: As disperse dyes require high temperatures in order to dye the fabric, the K/S values of the fabric do not change much between 170°C and 200°C (4.50 <K/S <5.35) and the RF is stable at around 0.8, indicating that good apparent colour depth can be achieved at 170°C.

(2) Colour fastness and feel: baking temperature at 180°C-195°C fabric either dry/wet rubbing fastness or soap fastness are at 4-5 level, but baking temperature above 185°C fabric feel will become hard, this is because the polyester/nylon fabric in the nylon component is not resistant to high temperature reasons.

Table 3-7 Effect of baking temperature on fabric printing properties

In summary, a baking time of 50-70 seconds and a baking temperature of 170°C-185°C are more suitable for “Micro printing” of disperse dyestuffs on polyester/nylon fabrics.

Therefore, the optimum process for the use of liquid disperse dyestuff on polyester and nylon fabrics using the “Micro printing” technique is.

Process: fabric → printing → drying (75℃ × 2min) → high temperature roasting (170℃-185℃ × 50s-70 s) → (soaping) → washing (80℃ × 15min) → drying → finished product.

Printing medium: Synthetic thickener PTF-S 3.0%, binder FC650 1.0%, liquid disperse dyes: 2%, remainder in water.

Application of paint printing on polyester/nylon fabrics

Per hoc quod liquidi colores in polyester/nylon tingutiones spargunt non colores nigros et quosdam colores non habent velocitatem boni coloris, sperandum est quod mixtura tinguit et fucos dispergit, cum fucis utentes. color synergisticus pro dispersione tinguit, compensat levi fuco et decolores velocitate disper- duntur tingui soli.

In order to avoid the effects on the hand feel and colour fastness of the fabric when the amount of paint used is high, only the effect of low concentration paint on the printing performance of polyester/nylon fabrics is investigated. This sub-section focuses on: 1) the printing performance of coatings on polyester/nylon fabrics; 2) the printing performance of polyester/nylon fabrics with coatings/disperse dyestuffs in the same paste. It is hoped that this will provide a new idea for printing on polyester/nylon fabrics.

3.6.1 Effect of paint concentration on print performance

The printing medium was: synthetic thickener PTF-S 3%, binder T9 2%, crosslinker 110 1%, coating yellow 201 X% and the rest was water. The effect of coating yellow 201 concentration on the printing properties (colour characteristic values, K/S values and colour fastness) of the polyester/nylon fabric was investigated and the results are shown in Table 3-8.

(1) K/S and RF: As the concentration of coating yellow 201 increases, the K/S value of the fabric increases, and there is a linear relationship. However, when the coating concentration is above 1.6%, the K/S value of the fabric does not change much, and the RF value becomes smaller, indicating that the floating colour on the surface of the fabric increases, and the amount of binder and crosslinker in the process needs to be increased appropriately to enhance the colour yield.

2) Colour characteristic values: as the paint concentration increases, the a* of the fabric increases from -2.15 to 6.65 and the b* from 58. 24 to 84.02, indicating a more vibrant colour.

(3) Arida et humida fricatio colorum festinationem: cum incremento pingunt intentionem, fabricae sopingendi color velocitas decrescit ab 4 gradibus ad 2-3 gradus, cum color defectus est 2%, arida et humida frictio est tantum 2-3. gradus, quae significat quod quamvis color apparentis cedat augeatur, superficies fabricae plus habet fluitantia colores et fibrae non cohaerent cum fuco, unde fit diminutio coloris velocitatis.

As can be seen from Figure 3-7, the bending stiffness and bending hysteresis moment of the fabric increased with the increase in paint mass fraction, but the increase was not significant, indicating that the change in paint concentration had an effect on the feel of the fabric, making the fabric feel stiffer. This is due to the fact that the coating needs to be bonded to the fabric by the binder and crosslinker to form a film, which affects the feel.

Table 3-8 Effect of paint yellow 201 concentration on K/S value, RF and colour fastness

Figure 3-7 Effect of coating yellow 201 concentration on bending stiffness and bending hysteresis moment of fabric

3.6.2 Effect of binder concentration on printing performance

Secundum 3.3.2 processum typographicum, medium imprimendi erat: syntheticum crassiusculum PTF-S 3%, ligans T9 x%, crosslinker 110 1%, vestiens flavum 201 1% et reliqua aqua erat. Effectus ligantis retrahitur in proprietatibus polyester et nylon fabricarum impressarum investigatum est. Effectus ligantis retrahitur in colorum valorum characterum, K/S et RF, et frictio fabricae velocitas in Tabula 3-9 ostenduntur, et effectus mutationum in ligamine incumbentis in flexionis rigoris fabricae et inflexionis hysteresis momentum in Figura 3 monstrantur. -8.

(2) Color valorum characteristicorum, K/S valorum et RF: Cum obligatio ligantis T9 augetur, K/S valor ab 3.85 ad 4.53 cum tergendo crescit, et a* et b* grandiores fiunt. Mutatio in intentione coating non afficit mutationem in maximis absorptionibus necem fabricae. Valor RF maxima est ad intentionem pingendi 5% et superficies fabricae minimum colorem fluitantis habet.

(2) Colour fastness to rubbing: As the concentration of the coating increases, the dry and wet rubbing fastness of the fabric gradually increases from level 2 to level 4, which is due to the increased concentration of the binder and the stronger film forming ability on the surface of the fabric, thus enhancing the colour fastness of the fabric to rubbing.

As can be seen from Figure 3-8, the concentration of the adhesive has a large effect on the bending stiffness and bending hysteresis moment of the fabric, the greater the concentration of the adhesive, the greater the bending stiffness and bending hysteresis moment of the fabric.

Table 3-9 Effect of binder concentration on colour characteristic values, K/S values and RF

Figure 3-8 Effect of coating yellow 201 concentration on bending stiffness and bending hysteresis moment of fabric

3.6.3 Effect of baking temperature and baking time on printing performance

The study of the printing performance of polyester/nylon fabrics using paints is a preliminary experiment to the study of co-pattern printing with paints/disperse dyestuffs

 . The effect of different baking temperatures (140°C-180°C) and times (40s-80s) on the printing performance must be investigated. The effect of baking temperature on the colour characteristics and rubbing fastness is shown in Table 3-10 and the effect of baking time on the colour characteristics and rubbing fastness is shown in Table 3-11.

Tabula 3-10 Effectus excoquendi temperatus in color notis valoribus et color velocitate

Ut videri potest ex Tabula 3-10.

(1) K/S, RF effusio maximam necem: Apparens color fabricae post impressiones non multum mutavit ab 140°C ad 180°C, sed RF valor paulatim auctus ut temperatura coquens, superficiem significans. color autem fabricae minus minusque fluitans fiebat. Ad 180°C, maxima effusio necem fabricae ab 430nm ad 440nm mutationibus, et tam a* quam b* incrementi comparati 14°C. Hoc verisimile est propter mutationem colorum luce pingendi propter caliditatem coquendi.

(2) Colour fastness and handfeel: With the increase of the baking temperature, the handfeel and friction fastness of the fabric do not change much, which means that the baking temperature has less influence on the colour fastness and handfeel of the fabric.

Table 3-11 Effect of baking time on colour characteristic values, K/S, and RF of fabrics

As can be seen from Table 3-11.

(1) K/S, RF and maximum absorption wavelength: with the extension of the baking time, the apparent colour of the fabric increased slightly, the maximum absorption wavelength (430nm) was basically unchanged, and the RF value increased from 0.85 to 0.94, indicating a decrease in the surface floating colour.

(2) Color fastigium et manus sentiunt: mutato coquendi tempore, fabricae, sive ante madefaciendo sive sopingendo, repugnantiam frictioni colori velocitatem plerumque non mutaverunt (3-4 gradus), manus sentiunt molles esse, significans coquens tempus in fabricae colore velocitate et manu sentire non est significans.

Therefore, baking temperature and baking time do not have a significant impact on the performance of the fabric after printing with paint, but from the point of view of energy saving and environmental protection, the shorter the baking temperature and time the better, so that the baking time and baking temperature can be reduced as much as possible without affecting the printing performance. For this reason, the printing of paints with disperse dyes can be optimised according to the printing process for disperse dyes, e.g. 50-70 seconds baking time and 170°C baking temperature.

The greater the concentration of the paint, the greater the apparent colour fastness of the fabric, but this affects the colour fastness of the fabric, and the need to increase the concentration of the binder will make the fabric feel worse. (3) Baking temperature and time have little influence on the printing performance of paint-printed fabrics, and the optimisation process for paint/disperse dye printing can be referred to.

Effect of disperse dye/paint homogenisation on the printing performance of polyester/nylon fabrics

The previous section briefly explored the application of paint printing on polyester/nylon fabrics, using a blend of paint and disperse dyestuff, demonstrating the feasibility of using the ‘micro printingtechnique for printing on polyester/nylon fabrics. In this section, the optimum mixing ratio of red, yellow and blue disperse dyestuffs with the same colour of paint will be explored for printing on polyester/nylon fabrics using the ‘micro printingprocess to examine the effect on the printing performance of polyester/nylon fabrics.

3.7.1 Performance of red disperse dye/red paint for homogenous printing

3.3.2 The printing process was used to control the total mass fraction of disperse dyes and coatings at 2%, the fixed binder T9 at 5%, the thickener PTF-S at 3% and the effect of varying the mass ratio of coating Red 201 to disperse Red MR (0:5, 1:4, 2:3, 3:2, 4:1, 0:5) on the printing performance (colour characteristic value, K/S value, colour fastness) of polyester/nylon fabrics. The results are shown in Table 3-12 and the effect on the bending stiffness and bending hysteresis moment of the fabric is shown in Figure 3-9.

From Table 3-12, it can be seen that: 1) Colour characteristic value and maximum absorption wavelength: the maximum absorption wavelength of Disperse Red MR and Coating Red 202 are different by 10nm, and the maximum absorption wavelength of Disperse Red MR/Coating Red 202 is the same as that of Coating Red 2.

02 is the same. The a-value of Disperse Red MR is greater than that of Paint Red 202, indicating that Disperse Red MR is more reddish.

(2) K/S and RF values: Comparing the K/S values of the fabrics before soaping, the colour depth of Disperse Red MR (10.88) is higher than that of Paint Red 202 (6.11), and the colour depth is highest when the mass ratio of Paint Red 202 to Disperse Red MR is 2:3 (K/S value of 11.23). The K/S values of the soap-washed fabrics showed a similar pattern of variation. The high RF values (0.94-0.97) and the low variation in RF values for both disperse dyes and paints indicate that the surface of the printed fabric does not show much colour floating.

(3) Colour fastness: Disperse Red MR has better dry/wet colour fastness (1 level higher) than Coating Red 202, but both have poor soap fastness (3 levels). Soaping improves the dry colour fastness of the fabric by about half a degree. When the ratio of paint to dye is 4:1 and above, the hand feel of the fabric is affected.

Table 3-12 Effect of Disperse Red MR/Coat Red 202 homogenous sizing on colour characteristic values, K/S values and colour fastness of fabrics

Fig. 3-9 Bending stiffness and bending hysteresis moment of dispersion red MR/painted red 202 homogeneous printed fabric

As can be seen from Figure 3-9: the ratio of disperse red MR to paint red 202 has little effect on the bending hysteresis moment of the fabric, but the greater the proportion of paint, the greater the bending stiffness of the fabric, indicating that the fabric is less soft, probably because the paint only relies on the binder and crosslinker on the surface of the fabric, while the disperse dye enters the interior of the fibre and has little effect on the feel of the fabric.

Therefore, the choice of coating red 202 and disperse red MR in the same stock printing, when the coating red 202 and disperse red MR quality ratio of 2:3, has a better printing performance, its K / S value is higher, and the colour fastness is better, the fabric feel is softer.

3.7.2 Performance of yellow disperse dyes and yellow paints for homogenous printing

3.3.2 The printing process was used to control the total mass fraction of disperse dyes and coatings at 2%, the fixed binder T9 at 5% and the thickener PTF-S at 3%, and the effect of varying the mass ratio of coating yellow 201 to disperse yellow MR (0:5, 1:4, 2:3, 3:2, 4:1, 0:5) on the printing performance (colour characteristic value, K/S value, colour fastness) of polyester/nylon fabrics. The results are shown in Table 3-13 and the effects on the bending stiffness and bending hysteresis moment of the fabric are shown in Figure 3-10.

From Table 3-13, it can be seen that 1) colour characteristic values and maximum absorption wavelengths: L for disperse yellow MR and paint yellow 201

The difference in ab values is not significant and the maximum absorption wavelength is 430 nm, i.e. the colour and light agreement between the two is good.

2) K/S values and RF values.

When comparing the K/S values of the fabrics before soaping, the colour depth of the disperse yellow MR (11.86) was higher than that of the paint yellow 20 1 (7.07), with a higher apparent colour gain and the highest RF value (0.91) when the mass ratio of paint yellow 201 to disperse yellow MR was 3:2. The K/S values of the soaped fabrics showed a similar pattern of variation.

(3) Colour fastness: the soap fastness of both coating yellow 201 and disperse yellow MR on polyester/nylon fabric printing is poor (<3 levels), but disperse yellow MR is much better than coating yellow 201 in the dry/wet state (about 2 levels difference), when the ratio of coating yellow 201 to disperse yellow MR is 3:2, the soap fastness of the fabric can reach 3-4 levels, and the rubbing fastness reaches 3 levels and above.

Table 3-13 Effect of dispersion yellow MR/paint yellow 201 on colour characteristic values and colour fastness of fabrics printed on the same stock

Fig. 3-10 Bending stiffness and bending hysteresis moment of fabrics printed with disperse yellow MR and paint yellow 201 blends

Ut ex Figura 3-10 constare potest: inflexio rigoris et inclinatio hysteresis momentum fabricae impressae auget cum proportione pingendi cum dispersus luteus MR miscetur cum fuco flavo 201, praesentia pingendi component aliquam vim habet in i.e. mollitiei fabricae.

Habita ratione color cedat, color fastigium et manus sentiunt, cum ratio efficiendi flavum 201 ad spargendum flavum MR est 3:2, fabricae melioris coloris velocitatem habet, superior apparentis coloris cedat et bona manus sentiat, et melior print effectus quam cum separatim utrumque adhibetur.

3.7.3 euismod ex caeruleo disperso colore et caeruleo colore pro imprimendi homogeneis

The effect of varying the mass ratio of coating blue 203 to disperse blue MR (0:5, 1:4, 2:3, 3:2, 4:1, 0:5) on the printing properties (colour characteristic value, K/S value, colour fastness) of polyester/nylon fabrics was controlled using 3.3.2 printing process with a total mass fraction of disperse dye and coating of 2%, fixed binder T9 of 5% and thickener PTF-S of 3%. The results are shown in Table 3-14 and the effects on the bending stiffness and bending hysteresis moment of the fabric are shown in Figure 3-11.

(1) Colour characteristic values and maximum absorption wavelengths: a value is positive for disperse blue MR only, and negative for paint blue 203a only, indicating that there is a large difference in the colour phase between the two, with disperse blue MR being reddish and paint blue 203 being bluish. The maximum absorption wavelengths of the two are related by 10 nm and their blending ratio affects the maximum absorption wavelengths and also directly influences the colour change of the fabric after blending.

(2) K/S and RF values: The apparent colour of disperse blue MR is higher than that of paint blue 203, but when the mass ratio of paint blue 203 to disperse blue MR is 4:1, the K/S value of the fabric can also reach about 9. The RF value of the fabric becomes smaller and smaller as the paint ratio increases, which means that the floating colour of the paint blue 203 is higher on the surface of the fabric. Soaping or not had little effect on the colour yield of the fabric for both coating blue 203 and disperse blue MR.

(3) Colour fastness: Disperse Blue MR has better rubbing fastness on polyester/nylon fabrics (≥4), while Coating Blue 203 has poorer rubbing fastness (≤3). Both have poor soap fastness (<3), but when the mass ratio of coating blue 203 to disperse blue MR is 2:3 or 3:2, soap fastness of around 4 can be achieved.

As can be seen from Figure 3-11, the bending stiffness and bending hysteresis moment of the fabric after blending of disperse blue MR with paint blue 203 increased with the increase in the proportion of paint, i.e. the softness of the fabric became worse due to the presence of paint.

Therefore, a 2:3 or 3:2 ratio of Coating Blue 203 to Disperse Blue MR results in prints with better colour fastness, higher apparent colour depth and a better hand feel than when each is used separately.

In summa, impressiones trium dyestufforum (dispergunt rubrum MR, dispergunt caeruleum MR, flavum MR dispergunt) mixtum cum tribus coloribus eiusdem familiae coloris (pinguis flavum 201, rubeum 202 et caeruleum 203 pingere) ostendit, in. rectae proportiones, quae mixti tinctores melius reddunt excudendi, quam unicus dyestuffus vel pingunt.

Tabula 3-14 Effectus dispergendi caerulei MR et pingendi caeruleum 203 crustulum imprimendi color notarum et colorum velocitatem textiliarum

Figura 3-11 Effectus dispergendi caerulei MR et pingendi caeruleum 203 crustulum imprimendi in fabricam flexionis rigoris et inflexionis hysteresis momento

Summary of this chapter

1, to explore the effect of NaOH dosage on the properties of polyester/nylon fabric, optimise the pretreatment process of polyester/nylon fabric as follows: fabric preparation → fiber opening (NaOH 12g/L, penetrant JFC 1g/L, bath ratio 1:30, heating to 110°C, heating rate 1°C/min, holding time 30min) → cold water washing → pickling (1g/L acetic acid solution) → cold water washing to neutral → drying (70 ℃). At this point the polyester/nylon fabric loses less weight and strength, has a better wool effect, is softer to the touch and the oligomers on the fibres are basically removed.

2. To optimize the printing process of disperse dyestuff for polyester/nylon fabrics, the effects of thickener, binder, baking temperature and baking time on the printing performance were investigated, and the following techniques were found to be suitable for printing on polyester/nylon fabrics.

Fabric → Printing → Drying (75°C × 2min) → High temperature roasting (170°C-185°C × 50s-70s) → (Soaping) → Washing (80°C × 15min) → Drying → Finished product.

Printing medium: synthetic thickener PTF-S 3.0%, binder FC650 1.0%, liquid disperse dye: 2%, the rest water.

3. Exploring the performance of coatings printed on polyester/nylon fabrics, the results show that

Quo maior coniunctio pingendi, eo maior color apparentis lucri fabricae, eo magis fluitantia colores in superficie fabricae, et colores frictiones humidi et sicci magis repugnant.

Jejunium sensim inclinat ac manus deterius sentit.

Siccatio tempus et temperamentum parum valent in observantia fabricae post impressiones imprimendi, et in siccitate temporis et temperaturae melius inferiora in prospectu energiae salvificae et tutelae environmental.

(3) Usus pingendi imprimendi in polyester brocade habet incommodum levi colore ac decolore festinatione et sentiente, ita typis imprimendi, cum liquida tingui dispergunt et depingunt in eadem radice.

4. The effect of different ratios of paint to dye on the printing performance of polyester and nylon fabrics was investigated by blending red, yellow and blue disperse dyes with paint of the same colour and using the “Micro printing” process.

Cum urinae dispersae adhibentur solum, color apparentis cedit et color velocitas fabricae mixtionis polyesterae gravis est, sed cum utraque miscetur, e.g. cum 2:3 massa fractionis proportio pingendi rubra 202 ad dispergendum rubrum MR, pingendum flavum 201 ad dispergendum flavum MR, detrahe caeruleum 203 ad dispergendam caeruleam MR, et cum 2:3 vel 3:2 massa fractionis proportio pingendi caeruleum 203 ad dispergendas hyacinthinas MR, vestigium melioris coloris velocitatis, altioris coloris apparentis profunditatis et boni manus quam inter se sentiunt. Color fastigium, color apparentis profunditas et manus sentiunt meliores sunt cum typis cum 2:3 vel 3:2 proportio massa efficiendi caerulei 203 ad dispergendas caeruleas MR quam cum uterque solus adhibetur.

Studium flammae retardant consummationem polyester / nylon textilia

Introductio

Fabricae polyester/nylon vulgo utuntur ut textilia decorativa et ex polyester, nylon et polyester/nylon fibris compositae componuntur. Ut fabricae decorativae, fabricae flammeae retardantur GB/T 17591-2006, significat fabricas ornatas ut aulaea, drapes, stibadium et stragula flammea retardant.

Flamma fibrarum polyesterum retardantium mutari potest per flammam retardantem modificationem filamentorum originalis, modificationis superficiei et methodi finiendi, quarum methodi finitae latius utuntur et singulis clientium necessitatibus accommodari possunt. Methodus post-finiens utitur adsorptione et depositione, compages chemicae, non polaris van der Waals, compages et adhaesio ad fibra retardat flammam figendi vel fabricae ad effectum flammae retardantis.

Polyamide fibres are similar to ester fibres in that they can be modified with flame retardant finishing of the original filament. The flame retardant finishing of nylon fabrics is a simple process compared to the flame retardant modification of raw silk, easy to operate and flexible, and is therefore suitable for the development of new flame retardant products.

There are certain problems.

Charles et al. used a mixture of DMDHEU (trade name Freerez 900) and TMM (trade name Aerotex M-3) as a crosslinker and FR as a flame retardant to treat nylon 6 and nylon 66 fabrics. It was shown that when the FR-DMDHEU-TMM system was used for nylon 6 and nylon 66, the nylon fibres formed a durable flame retardant with the flame retardant FR at a dosage of 40%, due to the cross-linking of FR with TMM to form a polymeric mesh.

Unius polyester vel nylon comparatus flammae retardantiae, polyester/nylon textilia sunt magis implicata et difficiliora ad flammam retardant; et polyester et nylon sunt fibrae syntheticae cum proprietatibus thermoplasticis, et quaedam communitates habent in suis characteribus combustionis; polyester/nylon textilia in hoc experimento adhibita contentum polyestrum altiorem habent, ideo flamma retardantia cum meliori flamma retardant effectum in polyester et nylon eligi possunt; attamen durabilitas flammae retardantiae adhuc est exitus cognitu digna, ut electio ligatorum idoneorum vel crosslinkers ad augendae lavacrum resistentiae flammae retardantiae. Attamen durabilitas flammae retardantis adhuc est fluxum investigandi dignum, ut electio agentis convenientis ligantis vel crucis coniungentis augendae lavacro resistentiae flammae retardant.

Based on the above-mentioned ideas, the main research in this section includes: 1) Screening a suitable flame retardant for polyester/nylon fabrics among the existing flame retardants with good flame retardant effect on polyester and nylon, which not only has good flame retardant effect but also has less impact on the hand feel of the fabric. (2) Optimise the flame retardant process by using a suitable binder or cross-linking agent to improve the durability of the flame retardant and investigate the thermal and combustion properties of the flame retardant on polyester/nylon fabrics to provide a theoretical basis for the study of the flame retardant mechanism of polyester/nylon interweaves.

Materiae experimentalis et apparatus

4.2.1 Fabrics and reagents

Polyester/nylon fabric, 87% polyester, 13% nylon, FDY 73.33 dtex x 177.78 dtex polyester/nylon composite, 100g/m2. Ltd.

PharmaceuticalsLevelManufacturersDicta
LM480Industrial gradeShanghai Kaiqi Industrial Development Co.Flame retardants
CAN200Industrial gradeGuangzhou Yinrui Chemical Co.Flame retardants
FLCIndustrial gradeShanghai Shenzhi Chemical Co.Flame retardants
FRC-1Industrial gradeShanghai Youn Chemical Co.Flame retardants
FRC-2Industrial gradeZhejiang Juping Textile & Chemical Co.Flame retardants
G029Industrial gradeSuzhou Ivy Import & Export Co.Flame retardants
N13840Industrial gradeShanghai Wangzhi Chemical Co.Flame retardants
TA-84Industrial gradeSuzhou Ivy Import & Export Co.Flame retardants
RM-340Industrial gradeSuzhou Ivy Import & Export Co.Flame retardants
HMMMIndustrial gradeSinopharm Chemical Auxiliaries Co.Etherified hexahydroxymethyl Melamine resins

4.2.2 Experimental apparatus

Equipment nameModelManufacturers
Electronic balance d=0.01gJJ200Changshu Shuangjie Testing Instrument Factory
Electric blast drying ovensDHG-9146AShanghai Jing Hong Experimental Equipment Co.
Thermal gravimetryType G-80TA Instrument Corporation, USA
Fracture Strength TesterINSTRON-3365Inster Corporation, USA
Scanning Electron MicroscopeS-4800Hitachi, Japan
MicrocalorimetryFTT0001FTT UK
Pneumatic Rolling StockNH-450KYOTO, Japan
Whiteness meterWSD-3UNanjing Jiangning District Fangshan Analytical Instrument and Equipment Factory
Horizontal and vertical combustion testersCZF-3Nanjing Jiangning District Fangshan Analytical Instrument and Equipment Factory
Oxygen Index TesterHC-2CNanjing Jiangning District Fangshan Analytical Instrument and Equipment Factory

Experimental methods and test methods

4.3.1 Flame retardant processes

Preparation of flame retardant solution (x% of flame retardant, y% of HMMM) → 2 dip and 2 roll (90% of roll residual) → drying (75°C) → baking (z°C, t min) → washing → drying.

4.3.2 Combustion properties

Continued ignition, negative ignition time (s) and length of damage (cm): tested according to the standardGB/T5455 .1997 Textile Burning Performance Test Vertical Method”.

Limitus oxygeni index (valoris LOI): Valores fabricarum polyester/nylon LOI ante et post flammam retardant peractionem metiuntur utentes HC-2 oxygenii index testor secundum vexillum GB/T5454 1997. Quo altior LOI valor, eo melior eo flamma retardatio fabricae polyester/nylon, dum LOI valorem demitto, eo facilius accenditur.

4.3.3 Tensile robur et elongatio confractus

Determinatio virium fracturae (N) et elongationis in confractione (%) fabricarum secundum GB/T 39231 1997 in YG065H machinae fabricae electronicae, dimensionis cujusvis speciminis: 35cm longi, 5cm latae, mediocris pretii ter pro singulis speciminibus sumptis; temperatura experimentalis: 23±2°C, humiditas relativa: 65±5 %.

4.3.4 albedo

The specimens were folded into 4 layers and the WSD-3U fluorescence whiteness meter measured 4 times and the average value was taken.

4.3.5 MCC heat release rate test

A microcalorimeter FTT0001 was used to weigh milligram samples in a crucible and subject them to a mixed flow of gas (80% nitrogen, 20% oxygen) at a rate of 1°C/s. A 40 μL alumina crucible was used for the experiments, with a temperature range of 75-750°C.

4.3.6 Thermal performance tests

In curva TG obtinetur secando et siccando congruam quantitatem flammae retardantis fabricae in TA Instrumento G-80 thermarum pondus damnum probatoris cum atmosphaera nitrogeni et temperatura ortum rate of 10°C/min ac notare massam exempli versus tortor. Vertex curvae DTG est maximus valor quantitatis ponderis amissi, qui respondet curvae inflexioni puncto TG. Hae duae curvae in hoc capite adhibentur ad resolvendum dependentiam caliditatis massae specimen.

4.3.7 ENARRATIO Electron Microscopia SEM

Fabrica flammea retardans probata et enucleata cum microscopio electronico S-4800 ad observandam morphologiam superficiei carbonis residuum post combustionem.

Selection of flame retardants and investigation of flame retardant processes

4.4.1 Strength and flame resistance of fabrics in the warp and weft direction

The tensile properties, vertical burning and limiting oxygen index of polyester/nylon fabrics were tested in the warp and weft directions respectively, and the difference in properties between polyester/nylon fabrics in the warp and weft directions was compared.

Table 4-1 Performance differences between warp and weft of polyester/nylon fabrics

Hoc est, quia cum fabricae polyester/nylon ardet, punctum ignitionis nylon circa 530°C est et punctum liquescens 215°C-253°C est. Punctum polyestri liquefactum 256°C est et punctum ignitionis 450°C. Cum temperaturae altae congressae sunt, nylon membra celeriter liquescunt, fabricae fabricae polyester/nylon contactum cum flamma fabricantes Cum temperaturis calidis expositae sunt, nylon component celeriter liquescit, fabricae polyester/nylon causans ut liquefaciat et cursim in contactu cum flamma. unde fit in insufficienti temperatus ad flammam apertam producendam, ita tempus negativum non est nec tempus renovationis. Longitudo damni in staminis directione minor est quam in directione laterali, at valor LOI est paulo altior quam in parte sudifera. N. 880,12 N et fractio vis in directione stamen fractio est 355,34 N. Ex quo patet quod vires fractae in stamine directo insigniter altiores sunt quam in partem squamiferam et elongationem intermissum altiorem esse. stamen directio quam in partem texitur. Causa magnae differentiae in effectu inter stamen et lineas polyester/nylon texturas duros est, quia polyester/nylon fabricae upholsteriae fibra compositae polyester/nylon intertexta est, cum stamine tincto polyester fibra simplex et stamen tinctum netum esse a polyester / nylon microfibre compositum. Perspecta directione polyester/nylon textilia mollia minus retardare quam stamen directionem flammiferam directionem polyester/nylon textilia adhibita est ut signum flammei-retardatur in hoc capite ad aestimandum. flammea retardant meliori modo.

4.4.2 Selection of flame retardants for polyester/nylon fabrics

Nine flame retardants (LM480, CAN200, FLC, FRC-1, FRC-2, G029, N13840, TA-84, RM-340) were selected for use on polyester and nylon. The flame retardants were screened for their suitability for the flame retardant finishing of polyester/nylon fabrics. The test results are shown in Table 4-2.

Table 4-2 Flame retardant properties of different flame retardants (polyester/nylon fabrics)

(1) Incendio perficiendi: Char longitudines flammarum quatuor retardantium (LM480, FLC, FRC-1 et FRC-2) decrescebant omnes comparati cum fabrica originali, indicantes flammam quandam retardant effectum, et longitudinum duorum char. flamma retardantia (FLC et FRC-1) tam minora quam 15cm sunt, planum B1 attingentia. Valores LOI FLC et FRC-1 tam prope 27% erant, quae circiter 7% altior erat quam LOI valor fabricae originalis, ita ut flammam retardans ad fabricae observantiam augeretur. Hoc verisimiliter ex eo quod FLC et FRC-1 sunt flammae phosphatae cyclicae et retardants estens, quae usui in fabricas polyesterae magis aptae sunt, et hae flammae retardantes sunt environmentally- amicae, non halogen, fumus humilis et toxicitas humilis, ac maiorem habent potentiam ad progressionem [116]. Excelsa ratio polyester in polyester/nylon textis facit eam aptam flammam retardare ad fabricas polyester et magis aptas fabricas polyester/nylon in hoc experimento adhibitas. Reliquae quinque flammae retardantes (G029, FRC-2, N13840, T A-84 et RM-340) flammam retardationem fabricarum polyester/nylon non emendaverunt, sed etiam vim acceleratam habuerunt, et liquefactio madefacta gravior erat. . Verisimile hoc est ex eo quod hae flammae retardantes magis aptae sunt ad retardationem flammae unius fabricarum, cum combustio fibrarum chemicarum, praesertim textorum intertextarum, magis implicata est.

(2) Albitudo: candor LM480 et FLC textilia confecta plerumque immutata est (minus quam 2% differentia a fabrica originali); candor CAN200, FRC-1 et FRC-2 textuum perfectorum non multum mutat (2% -10% ab originali fabricae differentia); candor G029, N13840 et TA-84 textilia confecta maior est quam fabricae originalis (altior quam 10%).

(3) Handfeel et stilla liquescunt: Usus flammae post-finitivae retardantis, nonnulli flammae retardantes maiorem in handfeo- rem fabricae habent impulsum. Cum quinque flammae retardantes (LM480, C AN200, FLC, FRC-1 et FRC-2) fabricas ad perficiendum adhibitae erant, guttae liquescentes minus ustionis erant, cum reliquae quattuor flammae retardantes

(G029, N13840, TA-84, RM-340) Finished fabrics with more melt drops when burning.

Taking into account the flame retardant effect, whiteness, hand feel and the amount of melt drops, the flame retardant FLC is more suitable for use on polyester/nylon fabrics, with a damaged char length of 14.2 cm, a B1 rating, no negative ignition and no renewal time, a higher LOI value (26.8%) than the original fabric, and no effect on the hand feel of the fabric, as well as fewer melt drops.

Optimisation of flame retardant processes

4.5.1 Effect of flame retardant concentration on flame retardant properties

The effect of different concentrations of flame retardant (1 0%, 15%, 20%, 25%, 30%) on the flame retardant effect of the fabric was investigated using the flame retardant FLC at a fixed baking temperature of 160°C and a baking time of 2min, and the results are shown in Table 4-3.

As can be seen from Table 4-3: As the mass fraction of flame retardant increases, the whiteness of the fabric basically remains the same and the length of damaged char decreases, and at a dosage of 15%, the length of damaged char is 14.7cm, reaching B1 level; however, when the mass fraction is not less than 15%, the increase in flame retardant dosage does not increase the flame retardant effect significantly; at a dosage of 30%, the length of damaged char of the fabric (14.2cm) is only 0.5cm less than at a dosage of 15%. The LOI value at 15% is 28.2%, which is a flame retardant condition. The change in LOI value is small when the amount of flame retardant is increased, but the feel of the fabric gradually becomes harder as the amount of flame retardant increases.

This is probably due to the fact that polyester and polyamide fibres have fewer reactive groups, so that the flame retardant binds to them mostly by van der Waals forces, hydrogen bonds, etc., resulting in less flame retardant binding to polyester or nylon fibres. At high temperatures, the flame retardant FLC enters partially into the polyester fibres, but remains mostly adherent to the surface of the fibres, and due to the presence of the nylon component, the flame retardant is mostly only physically adsorbed onto the fabric.

Taking into account the flame retardant effect and the feel of the fabric, a dosage of 15% of the flame retardant FLC is optimal.

Table 4-3 Effect of flame retardant dosage on the flame retardancy of fabrics

4.5.2 Water washing resistance of flame retardants

The flame retardant FLC is used to condition polyester/nylon fabrics, partly inside the fibres and mostly on the surface of the fibres. It is necessary to rely on the action of crosslinkers and binders to form a wash-resistant film on the fibre surface of the polyester/nylon fabric to improve the wash fastness of the flame retardant.

Melamine formaldehyde resin[116] (MF) is often used as a binder for flame retardants. It is characterised by the fact that the monomeric primer of the resin is soluble in water or certain solvents and can react with fibre molecules after high temperature baking or form a net-like polymer in the interstices of the fibres[117] , thus forming a coating for the flame retardant and improving its resistance to washing. The higher nitrogen content can be combined with some phosphate ester flame retardants to form a phosphorus-nitrogen synergy effect, thus increasing the flame retardant effect. However, its use is limited by the problem of formaldehyde in the process.

HMMM (etherified hexahydroxymethyl melamine resin) is a thermosetting resin that not only reacts with the hydroxyl groups of fibrous molecules during baking to form a stable three-dimensional spatial network, but also produces a low formaldehyde content and a large amount of N elements that form a phosphorus-nitrogen synergy with FLC (phosphate ester) flame retardants, making it a good choice. HMMM was used as a binder to investigate the effects of using it together with flame retardants on flame retardancy and washing resistance.

The effect of different concentrations of HMMM on the flame retardant effect was investigated by fixing the flame retardant FLC at 15%, baking temperature at 160°C and baking time at 2 min, using process 4.3.1.

Table 4-4 Effect of HMMM dosage on the flame retardancy of fabrics

As can be seen from Table 4-4: 1) without HMMM: fabric damage char length 14.5cm and LOI value 26.8%.

(2) 10% HMMM: the flame retardant effect is obviously improved, the length of damaged char is reduced to 10.6cm, reaching class B1, the LOI value reaches 28.8%, reaching the flame-retardant condition, does not affect the whiteness of the fabric and has less impact on the feel of the hand, less melt drops.

(3) 20%-40% HMMM: the change in damaged char length (11.5cm-13.2cm) and LOI value (28.5%-28.9%) is not significant and does not affect the fabric whiteness, the fabric becomes stiffer to the touch.

This means that the use of HMMM has no effect on the whiteness of the fabric and improves the flame resistance of the fabric, but a higher dosage (>10%) does not improve the flame resistance of the fabric and makes the fabric feel poor. The optimum amount of resin HMMM is therefore 10%. The fabric samples of the original fabric (a), the 15% FLC treatment (b), the 15% FLC and the 10% HMMM treatment (c) are shown in Figure 4-1 after the vertical burn test. As can be seen from Figure 4-1, the damage length of fabric sample c is shorter than that of fabric sample b, and the amount of residual char in the fabric has increased, indicating that the flame resistance of the fabric has been improved.

Fig. 4-1 Effect of HMMM on damaged carbon length of polyester/nylon fabrics

The fabric treated with 10% HMMM was impregnated in 2 g/L soap solution with a bath ratio of 1:50, shaken at 40°C for 10 min and washed in water for 2 min, i.e. a wash was completed.

Ut constare potest ex Tabula 4-5, cum moles HMMM ad 10% et moles flammae retardat ad 15%, carbo laesus longitudo post 5 lavat 13.7cm et LOI valor 27.4%, B1 attingens gradum; postquam fabricam sine HMMM lavavit, carbonis longitudo laesa 16.4cm erat et LOI valor 23.5% erat, et flamma retardans effectum redactum est. Post 10 lavat, char longitudo fabricae cum HMMM erat 14.3cm et B1 aequalem cum LOI valorem 26.8% attigit, sed char longitudo fabricae sine HMMM erat 20.4cm et LOI valor 21.4%, quod plerumque amisit. flamma retardat effectum.

HMMM igitur flammam retardationem et firmitatem fabricae auget et ad 10% optime adhibetur.

Mensa 4-5 Effectus numeri lavat in flamma retardatio textilia

4.5.3 Effectus coquendi temperatus et temporis in flamma retardatio

Flamma retardant FLC in fractione massae 15% figebatur et melamine resinae hexahydroxymethyl aetherificatae ad 10% fixa est.

Fig

(1) Amissio charis longitudinis et valoris LOI: quando temperatura coquens 150°C-160°C est, amissio fabricae charis longitudo polyester/nylon ab 16.4cm ad 10.5cm decrescit, et flamma retardans effectus melior fit; inter 160°C et 170°C amissio longitudinis charis infra 11cm, et flamma retardat effectum optimum in gradu B1; supra 170°C amissio charismatis iterum crescit ad 18,5cm, et flamma retardat effectus deterior. Supra 170°C longitudo char laesi ad 18,5cm crescit et flamma retardat effectus deterior. Valor LOI tendit ad augendum et tunc decrescentem ut siccus oritur, et ad 160°C-170°C valor LOI est supra 28%, quod flamma fibra retardat.

Hoc verisimiliter ex eo quod inter 160°C et 170°C polyester in statu elastico est et catenae segmentorum macromoleculorum mobiliores sunt, permittens flammam retardare magis in zonam amorphodem fabricae ingredi.

Compositio flammae retardantis ducit ad minus ligaturam flammae retardat ad fabricam et tenuiorem flammam retardat effectum.

(2) Albedo: candor fabricae decrescere tendit sicut temperatura coctio oritur (85.8%-78.4%), hoc est, quia nylon non repugnat calidis temperaturis et nimis altae temperaturae flavescere potest.

Itaque temperatura torrarum 160°C habita est.

P. 4-3 effectus excoquendi tempus in flamma retardatio textilia

(1) Longitudo charis deperditae et LOI valor: ab 1min ad 2min, longitudo chari destructae fabricae minuitur ab 17.5cm ad 10.3cm, et LOI valor augetur ab 24.3% ad 29.1%, sic flamma retardatur proprietas facta melior. Tardantia flamma ab 29.1% ad 25.9% decrevit. Probabile est hoc ex eo quod quo diutius coquitur tempus, eo magis flamma retardat in fibra penetrare et plus temporis HMMM transire nexum cum fibris moleculis in calidis temperaturis, ex meliori flamma retardantia. .

(2) Whiteness: As the drying time increases, the whiteness of the fabric decreases from 85.0% to 81.25%, probably because the longer the drying time, the nylon component is not resistant to high temperatures, resulting in a more serious decrease in the whiteness of the fabric.

Therefore, a baking time of 2 min and a baking temperature of 160°C resulted in a good flame retardant effect (damaged char length below 11 cm, LOI value above 29) and a small decrease in whiteness (>84).

Analysis of the effect of flame retardant finishing on fabric properties and flame retardant mechanism

Polyester/nylon fabricae cum 15% flamma retardant et 10% HMMM confecta est secundum 4.3.1. Factio fabricae ante et post flammam retardantis comparata est et flamma mechanismus retardans est resoluta.

4.6.1 possessiones distrahentes

Eventus probationum pro viribus interrumpere et elongationem interrumpere in stamine et directionibus subtegminis pro fabricas polyester/nylon et sine flamma retardare peractionem monstrantur in Tabula 4-6.

As can be seen from Table 4-6, the strength of the polyester/nylon fabric decreased by 4.5% in the weft direction and by 7% in the warp direction after the flame retardant finishing. This change is probably due to the fact that the high temperature baking during the flame retardant finishing process causes the nylon component to become brittle, resulting in a reduction in strength. Before and after finishing, the weft elongation at break increased by 4.07% and the warp elongation at break increased by 0.88%.

Table 4-6 Tensile properties of flame retardant polyester/nylon fabrics before and after finishing in warp and weft directions

4.6.2 DTG-TG analysis and flame retardant mechanism

The TG curves of polyester/nylon fabrics before and after flame retardant finishing are shown in Figure 4-4 and the DTG curves in Figure 4-5. The heat loss rate, the maximum heat release rate and the carbon residue rate in the TG-DTG graphs of polyester/nylon fabrics before and after finishing are analysed in Table 4-7.

Ut ex Figura 4-4 et Tabula 4-7 videri potest, figura curvarum TG fabricarum ante et post flammam curationis retardat plus minusve eaedem, cum differentiae compositionis initialis temperatae (ad 5% pondus damnum), maximum rate pondus damnum et rate residua carbo ad 700°C. Polyester/nylon fabricae sine flamma retar- denti finitionem habet initialem compositionem temperaturam 3711°C, maximum scelerisque pondus damnum in 437.1°C, massa iacturae 91.5% ad 70°C et residua carbonis contentum 8.5%. E contra, temperatura compositionis flammea-retardae tractatae fabricae polyester/nylon ad 314.38°C processit, maximus calor amissionis rate ad 357,3°C progressus est et residua carbo contentus usque ad 15.7% fuit.

Tres gradus principales sunt in processu ponderis amissi scelerisque polyester/nylon textilia sine flamma peractio retardant.

1) Temperaturis infra C°C, maxime evaporatio aquae e fabrica.

(2) Secunda periodus incipit in circuitu 400°C, quae ab initio compositionis fabricae polyester/nylon causatur, processus qui fit in diminutione celeri in qualitate fabricae.

(3) Tertius gradus incipit circa 450°C, ubi qualitas fabricae essentialiter immutata manet, et causatur ex oxidatione vilis torturae residui fabricae polyester/nylon.

Scelerisque pondus damnum polyester/nylon fabricae flammeae retardantis confectae in quattuor principales gradus dividitur.

1) A C°C, aqua in fabrica incipit evanescere et qualitas fabricae leviter mutat.

(2) Secundus gradus est ad 314.3°C, quia flamma retardare incipit putrescere. Sicut flamma retardat est phosphoric

 acid ester flame retardant, the decomposed phosphoric acid further polymerises to form polyphosphoric acid[118] , which easily dehydrates and carbonises the polymer, forming a carbon layer on the surface of the fabric, acting as a heat insulation, oxygen barrier and smoke suppression, and preventing the generation of molten droplets. At the same time, the decomposition of the etherified hexamethylene melamine resin releases a large amount of non-combustible gases such as NH3 and N2, which also dilute the concentration of combustible gases on the surface of the burning material, accompanied by a gas-phase flame retardant effect.

(3) The third stage is the rapid decomposition stage, 370°C460°C, during which the fabric quality decreases rapidly.

(4) Quartus stadium circa 470°C occurrit et est oxidatio residui carbonisedi, ut textilia polyester/nylon sine flamma retardant finitionem.

Figurae 4-4 TG curvae polyester / nylon textilia ante et post finitum

P. 4-5 DTG curvae polyester / nylon textilia ante et post peractis

Tabula 4-7 Scelerisque pondus damnum temperatus et maximus calor emissio rate ante et post flamma retardant consummationem polyester/nylon textilia

Ut ex Figura 4-5 et Tabula 4-7 constare potest, curvae DTG et curvae TG eaedem sunt in concursu compositionis temperatus, et curva D TG ostendit apicem caloris deminuti ponderis fabricae polyester/nylon. sine flamma peractio retardans occurs in 437°C cum compositione rate of 1.69 W/g. Vertex caloris detrimentum rate fabricae polyester/nylon sine flamma retardat finitionis occurs in 401.7°C, quod non solum antecessum temperaturae sed etiam multo minoris compositionis rate of 0.99 W/g quam fabricae polyester/nylon sine flamma retardant finitionem (1.69 W/g). Rate compositionis erat 0.99 W/g, quae multo inferior erat quam rate compositionis fabricae polyester/nylon sine flamma retardantis (1.69 W/g). Hoc significat ratem compositionis flammae fabricae retardant-perfectae tardiorem esse in combustione, quae retardatio flammae prodest. Praecipua ratio inferioris compositionis est quod phosphorus elementum flammae retardantis compositionis formet compositionem valde viscosam, non volatilem et stabilem, acidum metaphosphoricum, quod superficiem materiae ardentis in hac temperie tegit et fabricam etiam impedit. ex contactu cum oxygeni. Phosphorus flammam retardat, una cum NITROGENIO continens resinae aetherificatas melamine, reactionem carbonisationis promovet, inde in flamma synergistica notabilis phosphoro-nitrogenii retardatio.

Quam ob rem, maximum caloris detrimentum ratis polyester/nylon fabricae post peractionem flammeae retardantis minor est quam quae fabricae imperfectae et temperaturae ad quam maximus calor detrimentum inducitur, reducitur, unde in 7.2% incremento est. in rate residuum carbonis et effectum significantem flammeum retardat.

4.6.3 Analysis Microcalorimetrica

Calor Release Rate (HRR) materialis in combustione, i.e., moles caloris per unitatem tempore combustionis emissi, est potissimus parameter ignis propter combustionis periculum materiae in igne notans. Quam ob rem variis instrumentis ac methodis ad determinandum calorem emissionem materiae proximis annis emerserunt[ 120 ]. Microcalorimetria est novum, celeri instrumentum, quod pauca milligrams (mg) speciminis et usuum analyseos scelerisque requirit ad deprehendere chemicorum materias ardentes emissas et ad excludendas res physicas quae ad exitum test combustionis non pertinentes sunt, qualia sunt. expansionem, stillantem et obumbrationem [121].

Calor emissio rate (HRR) curvae fabricae polyester/nylon ante et post flammam retardant finitionem monstrantur in Figura 4-6. Calor emissio capacitatis (HRC), totalis calor emissio (THR), maximus calor emissio rate (pHRR) et temperatura respondente maximo calore remissionis (TpHRR) notitiarum combustionum in Tabula 4-8.

Figura 4-6 analysis Microcalorimetric polyester / nylon textilia ante et post flammam retardant consummationem

Tabula 4-8 Incensio data polyester/nylon textilia sub conditiones microscopicas ante et post flammam retardant finitionem

Ut ex Figura 4-6 et Tabula 4-8 constare potest, calor emissio rate polyester/nylon textilia cum flammae retardantia finitione signanter mutata est, cum apicem caloris emissio rate decrescens ab 288.5 W/g ad 206 W/g comparata. ad fabricas polyester/nylon sine flamma retardant peractionem, et totus calor emissio rate (THR) flammae retardans textilia finitarum etiam decrescentium ab 21.5 kJ/g ad 16.8 kJ/g. Hoc indicat totalis caloris emissio fabricae polyester/nylon post flammam peractionem retardantis redactum esse et vehementiam caloris remissionis in combustione efficaciter suppressam, periculum ignis minuendo.

4.6.4 Scanning Electron Microscopy (SEM)

Microscopium electronicum S-4800 intuens adhibitum est observare morphologiam superficiem residuorum post combustionem textilia polyester/nylon sine flamma retardant peractam et polyester/nylon textilia cum flamma retardant peractam, vide Figure 4-7.

Ut ex figura 4-7 constare potest, superficies combustionis reliquiarum fabricae originalis relative compactae, laeves, laeves et continuae sunt, et pauciora foramina sunt, ex eo quod residuum combustionis continet fabricae. magnus numerus fibrarum, quae nondum penitus combustae sunt, et fabricae liquefactionis et re- curationis fabricae, necnon aliqua carbonum residua, quae ulterius cremari possunt. Causa synergisticae est effectus nitrogeni et phosphori formati in combustione et compositione phosphatis ester et melamini resinae aetherificatae hexahydroxymethili, quae magnam quantitatem char residua producit. Hae stratae tumida et porosa cokei contactum inter oxygeni et materias combustibiles impedire possunt et flammam retardant effectum fabricae emendare.

 Originale pallium

 Flamma retardant consummationem

Fig

4.6.5 Effectus flammae retardare permittit in fabricae proprietatibus excudendi

Quinque fuci dispergunt (flavae 163, aurantiacae 30:3, caeruleae 284:1, caeruleae 60, rubrae 135) impressae sunt in fabrica polyester/nylon cum flamma metam retardant. RF, c et Ecmc fabricae ante et post flammam retardant peractionem calculi utentes fabricae sine flamma retardant peractionem ut vexillum specimen.

Tabula 4-9 Effectus flammae retardans finitur in proprietatibus textuum impressorum

(1) Color differentia: Flamma retardat quinque colores dispergit (flavo 163, aurantiaco 30:3, caeruleo 284:1, caeruleo 284:1, caeruleo 284:1, caeruleo 284:1).

(blue ≥ 30, red 135) the colour difference of the printed fabric is largely unaffected (-2 < ∆c < 2 , 0 < ∆Ecmc < 2).

(2) K/S and RF values: The RF values of the five disperse dyestuff printed fabrics were not lower than 0. 9 after the flame retardant finishing, indicating that the flame retardant finishing had little effect on the apparent colour yield of the fabrics after the printing of the five dyestuffs.

(3) Color fastigium ad frictionem: Color humidus festinatio ad frictionem fabricae post excudendi cum dispersione flavi 163 reducta est per 0.5 gradum, color siccus celeritas ad frictionem aurantiae 30:3 redacta per 0.5 planitiem, reliquae tres. colores (blue 284,1, blue 60, rubra 135) nullam mutationem colorum velocitatem ad frictionem ostendit. Color celeritas ad frictiones (siccas et humidas) quinque dyestuffos dispersorum impressorum in polyester/nylon textilia cum flammae retardantis perfectionis non minus quam 4-5, significans flammam retardant metam parum valere ad colorem festinationem ad frictionem. textis.

Demum, flammea consummatio retardans essentialiter nullum effectum habuit in proprietatibus impressis (valorum colorum proprietatum, K/S, velocitatum confricationis) quinque dyestufforum (flavi 163, aurantiorum 30:3, caerulei 284:1, caerulei 60; rubeum 135).

Summary of this chapter

1. Flamma retardat FLC aptior usui in texturis polyester/nylon, cum dosis 15%, fabricae fabricae carbonis longitudinem minorem labefactatam, nullam combustionem negativam et combustionem temporis continuam, index oxygeni etiam altior est. fabricae originalis, sensum et candorem fabricae non afficit et rariores guttas liquefacit.

2、 Cum moles HMMM est 10% et moles FLC est 15%, fabrica adhuc bona flamma retardat possessiones post 10 lavat.

3. Flamma optimized processus retardantis est: praeparatio flammae retardantis liquoris (15% flammae retardat, 1 0% HMMM) → duo intingit et duo volumina (90% volumen residua) → siccatio (75°C) → coquitur (160°C , 2. min) → Lavatio → Siccatio.

4. Fractio fabricae in vi staminis et directionum subtegmina reducitur, postquam flammam retardat peractionem, elongatio in stamen et subtegmina aucta est, et albedo fundamentaliter immutata est.

5. The maximum heat loss rate of polyester/nylon fabric after flame retardant finishing is smaller than that of unfinished fabric, the temperature at which the maximum heat loss rate is reached is reduced, the maximum heat release rate and the total heat release amount are reduced, the residual carbon rate is increased, and the flame retardant effect is obvious

6. The best process for printing on polyester/nylon fabrics using disperse dyestuffs. The flame retardant finishing has basically no effect on the printing properties (colour characteristic values, K/S values, rubbing fastness) of the five disperse dyestuffs (disperse yellow 163, disperse orange 30:3, disperse blue 284:1, disperse blue 60, disperse red 135) on polyester/nylon fabrics.

conclusio

1. The printing performance of 41 home-made liquid disperse dyes was investigated using the “Micro printing” technique. The dyestuffs with good printing performance on polyester and nylon fabrics were screened and an attempt was made to explain the differences in the performance of disperse dyestuffs on different fibres in terms of molecular forces.

Thirteen of the 41 disperse dyes (orange 30:3, orange 44, red 86, red 885, yellow 163, yellow 4,063, blue 183, blue 183:1, blue 60, green 9, violet 63, violet 93, brown 19) were selected as suitable for printing on polyester/nylon fabrics. Four of the dyes (red 885, orange 30:3, orange 44, purple 93) need to be soaped after printing to remove the surface colour and improve colour fastness. The other 9 dyes (red 86, yellow 163, yellow 4063, blue 183, blue 183:1, blue 60, green 9, purple 63, brown 19) require only a hot water wash after printing to give the fabric a good colour fastness, thus eliminating the need for soaping and achieving energy savings.

Commertio dyestufforum dispergendi cum polyester et nylon est complexus, sicut fibrae nylon per dipole et vincula hydrogenii ad tinctura maxime tenentur, polyester autem maxime ligatur ad tinctura molecularum per dispersionem virium. Cum vis repulsiva vel absorptiva totius potentiae energiae tinctura molecularum augetur, iuvat dyestuffum ligare ad fibras nylon et ad colorem festinationem emendandam.

2, ad explorandum influentiam dosis NaOH in proprietatibus fabricae polyester/nylon, optimize processum praetractationis polyester/nylon fabricae sic: praeparatio fabricae → fibra foramen (NaOH 12g/L, penetrans JFC 1g/L, ratio balnei 1 :30, calefactio ad 110°C, calefactio rate 1°C/min, tenens tempus 30min) → aqua frigida lavatio → salsamentum (1g/L solutio acidum aceticum) → aqua frigida lavatio ad neutras → siccatio (70 ℃). Hic fabricae fabricae polyester/nylon minus pondus et vires amittit, effectus lanae melior est, sensus mollior et oligomers in fibris radicaliter removentur.

3. Ad optimize processum imprimendum dyestuffis dispergendi pro fabricas polyester/nylon, effectibus crassioris, ligatoris, coquendi temperie et coquendi temporis in technologia imprimendi explorati sunt, et sequentes artes aptae ad imprimendum in polyester/nylon inventae sunt. textilia.

Fabric → Printing → Drying (75°C × 2min) → High temperature roasting (170°C-185°C × 50s-70s) → (Soaping) → Washing (80°C × 15min) → Drying → Finished product.

Medium Typographia: Saccharum crassior PTF-S 3.0%, ligans FC650 1.0%, liquidum sparge tingum: 2%, residuum in aqua.

4、 Persecutio tunicarum in polyester/nylon textorum impressorum explorata est et eventus demonstraverunt.

Quo maior coniunctio pingendi, eo maior color apparentis lucri fabricae, eo plus color in superficie fabricae innatat et color adstrictio humida et arida fricatio successive deterior fit et sensus fabricae deterior fit.

Coquens tempus et temperamentum parum valent ad fabricam faciendam post imprimendi fabricationem, et coquitur tempus et temperatura inferior melius ex parte energiae salvificae et tutelae environmentalis.

(3) Usus pingendi imprimendi in polyester brocade habet incommodum levi colore ac decolore festinatione et manu sentiunt.

5. Effectus variarum rationum pingendi ad tingendum in polyester et nylon fabricae typographicae operae indagatum est per mixtionem dispersarum tingui rubri, flavi et caerulei cum fuco ejusdem coloris et utendo. “Micro printing” process.

Sed cum duo tincturae mixtae sunt in 2:3 massae fracturae ratione pingendi rubri 202 ad dispergendum rubrum MR, depingendum flavum 201 ad dispergendum flavum MR, depinge caeruleum 203 ad dispergendam caeruleam MR, color velocitatem fabricae impressae melius est quam cum singuli bini tingui miscentur, cum ratione fractionis 23 vel 3:2 massae. Color velocitas, color apparentis profunditas et manus bonae sensus impressi meliores sunt quam cum uterque solus adhibetur.

6. Conare eligere flammam retardare, cum bona flamma retardat effectum et minus impulsum in technicae Typographiae observantia. Optimize processus flammae retardantis, ligaturae aptae utere vel transversis agentibus coniungens ad vetustatem flammae retardant meliorem, et usum flammae retardantis in processu typographico explorant.

Flamma retardat mechanismum in polyester/nylon textilia theoreticam fundamentum praebet ad studium flammae retardantiae in fabricas polyester/nylon. Eventus studii monstrant.

Ad 15% dosis fabricae fabricae parvam longitudinem char, nullam ignitionem negativam nec tempus renovationis habet, et maiorem oxygeni index quam fabricae originalis, sine sensu et candore fabricae afficiens et cum paucioribus guttis liquefactis.

②. Cum HMMM ad 10% et FLC ad 15% adhibetur, fabrica adhuc flamma bona retardans possessiones post 10 lavat.

③. Processus optimized flammae retardantis est: praeparatio flammae retardat solutio (15% flamma retardat, 10% HMMM) → duos intingit et duos rotulos (90% volumen residua) → siccatio (75°C) → coquitur (160°C, 2 min. ) → Lavatio.

Stamen et subtegmina fractis viribus textuum reductae sunt et elongatio in stamine interrumpens aucta et subtegmina, postquam flammam finiendi retardant.

⑤. Maximum caloris detrimentum rate polyester/nylon fabricae post flammam retardant perfectionem minor est quam illa fabricae imperf, temperatura ad quam maximus calor damnum rate attigit, minor est, maximus calor emissio rate et omnis calor emissio sunt inferior, rate residua carbonis altior est et effectus notabilis flamma retardat

(vi) Optimum process for printing on polyester/nylon fabrics using disperse dyestuffs. The flame retardant finishing had essentially no effect on the printing properties (colour characteristic values, K/S values, colour fastness to rubbing) of the five disperse dyestuffs (disperse yellow 163, disperse orange 30:3, disperse blue 284:1, disperse blue 60, disperse red 135) on polyester/nylon fabrics.

panis panis

panis panis

Hi, ego Pan Pan, conditor BoloTex, officinam in Sina currendo fui, quae Print Fabricium per 10 annos nunc facit, et propositum huius articuli communicare tecum est scientiam ad Fabricam ex Sinensi relatam. prospectu elit.

Add Your Business By parva MOQ Cum Custom Print Fabrica

FABRIC: 200+

MOQ:100 Meters Per Design

DIVRY: 5-12 diebus

MATERIA : Polyester, Cotton,Acetate, Silius Italicus ........

DESIGNS: Ingentis praesto

Conare importare Calidum scelerisque Fabricae Ex China

Subscribe ut -The Top fashion drawing guide》

Hic dux colligit omnes modos formandi formas per CC annos historiarum monumentorum, quascumque chirographo vel graphice computatrum